
Use of Trust Vectors in Support of the CyberCraft Initiative

THESIS

Michael Stevens, Captain, USAF

AFIT/GIA/ENG/07-03

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this paper are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government, except where noted



AFIT/GIA/ENG/07-03 
 
 
 
 
 

USE OF TRUST VECTORS IN SUPPORT OF THE CYBERCRAFT INITIATIVE 

 

THESIS 

 

Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

 

 

 

Michael Stevens, B.S.C.S. 

Captain, USAF 

 

 

March 2007 

 

 

 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 





AFIT/GIA/ENG/07-03

Abstract

As the United States Air Force extends its mission into the realm of Cyberspace,

the CyberCraft Initiative is designing a framework for command and control of future

Air Force Cyber-weapon systems. These Cyber-weapon systems, CyberCraft, will

autonomously operate and defend the Air Force networks and information systems

to provide Cyberspace Superiority in support of the defense of the United States.

The fundamental research question of the CyberCraft Initiative is “What is required

for a commander to trust a CyberCraft to autonomously defend military information

systems?”

The Trust Vector model [17] is one method of integrating trust into the Cyber-

Craft fleet. Trust Vectors define trust and distrust between agents based on three

components; current and historical data, intrinsic knowledge of the remote agent’s

abilities, and recommendations from other agents. This research explores the suit-

ability of the Trust Vector model to the CyberCraft Initiative and defines the strengths

and remaining challenges of using the Trust Vector model.

This research finds that the Trust Vector model can be modified to integrate

trust into the CyberCraft Initiative. Several expansions to the model are proposed,

including applying the Trust Vector model to an asynchronous paradigm for data
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transactions. This research also determines the limits of the utility of historical data

for the Trust Vector model.
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Use of Trust Vectors in Support of the CyberCraft

Initiative

I. Introduction

On 7 December 2005, Secretary of the Air Force Michael Wynne and Chief of

Staff of the Air Force T. Michael Moseley stated “The mission of the United States

Air Force (USAF) is to deliver sovereign options for the defense of the United States

of America and its global interests – to fly and fight in Air, Space, and Cyberspace”

[22]. Various Air Force units have been protecting Air Force networks through use

of network policies and technological means (e.g., firewalls and intrusion detection

systems (IDS)) for a number of years, but this formal expansion of the Air Force

Mission into the domain of Cyberspace comes with additional challenges. These

challenges spring from the properties of Cyberspace, which include but are not limited

to [10]:

Non-jurisdictional: There is no governing authority over Cyberspace. If an Air

Force base was targeted by an air attack, we could track the offending aircraft

back to its country of origin, and we could then engage with that country

militarily or diplomatically. With a Cyber-attack, not only does the relative

anonymity of the internet make it extremely difficult to attribute the attack to

a geographical location, but laws regarding the use of computers vary between
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countries, so what one country may interpret as an act of war the offending

country might interpret the act as only a misdemeanor offense.

Low cost of entry: The price tag for a competent air force or blue-water navy in

terms of training, personnel, and equipment is steep enough to discourage most

nations from creating a viable threat to the United States military. Conversely,

to build a threatening Cyber-warfare squadron requires a few personnel with

computer science backgrounds and a handful of inexpensive computers. These

Cyber-warfare squadrons could cripple an adversary that is militarily more pow-

erful.

Non-state players: Complementing the previous property, organized crime and ter-

rorist groups can build their own Cyber-warfare unit and attack nation-states

just as a third world nation’s Cyber-warfare squadron could attack the U.S.,

European Union, or People’s Republic of China.

Interdependance: One adage about network security is “A vulnerability assumed by

one is shared by all”. An attacker does not need to attack all aspects of a target

network, the attacker only needs to find one vulnerability to exploit (much as

a burglar only needs to find one unlocked window to gain entry). The defender

needs to protect the entire attack surface and worry about insider threats. Air

Force base networks share information between themselves and trust the security

of other base networks. If an attacker can compromise the security of one base

network, the attacker can then access the other base networks of the Air Force

with the trust given to the compromised base.
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To meet these challenges, the CyberCraft Initiative is creating a set of standards

for future cyberspace weapon systems1, which will be used to provide Cyberspace

Superiority to U.S. forces, much as aircraft provide Air Superiority and spacecraft

(satellites) provide Space Superiority to U.S. forces.

Figure 1.1: Artist’s rendition of CyberCraft in Cyberspace.

These cyberspace weapon systems, CyberCraft, will be built to the CyberCraft

Initiative’s standards by a variety of defense contractors, much as the aircraft and

satellites employed by the USAF are built to standards by contractors. The Cyber-

Craft consist of the agent and the payloads carried by the agent, similar to a F-16

Falcon and the variety of bombs and pods attached to the F-16’s hardpoints. The

agent, a software or hardware construct running on a host computer, is analogous to

the F-16, able to load and deploy several payloads, while the payloads are analogous

1The term “weapon system”, used in this context, does not necessarily denote an offensive capa-
bility. Cargo aircraft and communications satellites are also considered weapon systems. Specifically
“An item or set of items that can be used directly by warfighters to carry out combat or combat
support missions to include tactical communications systems.” [2]
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to the bombs, Electronic Counter-Measure (ECM) pods, or other equipment pods

attached to the aircraft. While the artist’s depiction in Figure 1.1 may be fanciful

and more in line with the view of a computer network from a movie, the concept

of employing weapon systems in Cyberspace needs to be couched to the Air Force

operational leadership in terms relevant to their experiences.

CyberCraft agents will be deployed on U.S. and coalition military networks to

provide commanders management of their network and a fused picture of the health of

the network. CyberCraft agents are resident on host computers, and have the ability

to load different payloads to accomplish different missions, from loading a policy

that changes settings on the host computer to comply with a specific INFOCON

(Information Operations Condition) level to reporting on network traffic received by

the host computer [14].

1.1 The need for CyberCraft

CyberCraft or a similar system is needed by the Air Force to achieve Cyberspace

superiority. As the potential threats, the number of networked information systems,

and volume of network traffic all increase exponentially, the CyberCraft fleet are

needed to effectively manage the Air Force networks’ security posture.

Threats: With faster networks and rapid computer processing, a human’s re-

action time is too slow to prevent network attacks. The SQL (Standard Query Lan-

guage) slammer worm infected 75,000 hosts on the internet, the majority within 10

minutes. The SQL Slammer worm instances on the internet doubled every 8.5 sec-
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onds [8], which is far faster than a human can defend against. CyberCraft agents

will possess some decision making capabilities to identify and defend against network

attacks faster than a human could react.

Management: The ratio of network devices to personnel is quickly approach-

ing two network devices per human. It used to be that there was one computer in a

workcenter to be shared by the personnel of that work center. Today, most airmen

have a computer at their desk and commanders, executive officers, and staff personnel

have a computer and a Blackberry, to say nothing of the servers and infrastructure

that support each base network. Management of the computers and the information

produced by the computers becomes too large and daunting a task to perform man-

ually. There are numerous automated management systems that perform tasks like

loading computer patches or policy enforcement (e.g., anti-virus software), but Cy-

berCraft aims to integrate these tasks and produce a composite picture of the network

health with an associated confidence.

Trust: The fundamental research question for the CyberCraft Initiative is:

“What is required for a commander to trust a Cybercraft to autonomously defend

military information systems?”. For a commander to incorporate the CyberCraft

agents into the decision making process or to give responsibility for the defense of the

network to the automated decision making agents, that commander must have some

level of trust in the data provided by that agent, and some level of confidence in the

ability of the CyberCraft agent to successfully and accurately perform the defense

mission.
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For the CyberCraft fleet to be given autonomy to act without human interven-

tion in the defense of our military networks, the CyberCraft Initiative needs to include

a mechanism in the system that specifies the trust the system has in the abilities of

its agents to perform an action successfully or report data accurately.

Dr Indrajit Ray and Mr Sudip Chakraborty from Colorado State University

were funded by the Air Force Research Laboratory (AFRL) and the Federal Aviation

Administration (FAA) to develop a new model of trust that accounts for differing

degrees of trust. The trust model they developed is the Trust Vector Model, which

uses a combination of factors (experience, knowledge, and peer recommendations) to

generate a trust vector to represent a trust relationship in a specific context, from

which a trust value can be derived [17].

1.2 Thesis Statement

This research is sponsored by the Cyber Operations branch of AFRL at Rome

Labs, NY, who also sponsor the CyberCraft Initiative. As the need for trust is vital

to the CyberCraft Initiative, this research examines if the Trust Vector model is

applicable to integrate trust into the CyberCraft fleet. For this research, I use the

definition of trust from the Trust Vector model:

Trust is defined to be the firm belief in the competence of an entity to act
dependably, reliably and securely within a specific context.

Using this definition of trust, integrating trust into the CyberCraft Initiative en-

ables the commander to have a measure of confidence that a Cyber-operation executes
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as expected. The trust that an agent’s sensors will accurately sample and interpret

the environment imbues the data posted by the agent with an associated probability

of veracity. Finally, decision engines also have a level of trust associated with their

abilities to make correct decisions, so the commander can trust at some level that the

CyberCraft fleet will operate in a dependable, reliable, and secure manner to protect

Air Force networks.

Thesis Statement: This research examines the use and limitations of the Trust

Vector model for the CyberCraft Initiative. I hypothesize that the Trust Vector model

is an acceptable model for the distributed environment of the CyberCraft fleet. This

research determines whether or not my hypothesis is true. Additionally, this research

explores some parameters needed to fit the Trust Vector model to the CyberCraft

fleet.

Some of the problems with fitting the Trust Vector model to the CyberCraft

fleet are the scalability of the Trust Vector model and the use of the Trust Vector

model to identify bad data. This research addresses these problem areas, and provides

recommendations to the programmers of CyberCraft agents for implementation of the

Trust Vector model.

Results: This research finds that a modification of the Trust Vector model can

be used to provide a metric of trust in a CyberCraft agent’s actions. These modifica-

tions include altering the degradation function, defining a range for the trustworthi-

ness of events, and incorporating a transactional paradigm to the Trust Vector model,
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similar to the feedback mechanism on eBayr [1]. The modifications identified are

listed in Sections 3.1 and 3.2. There are several challenges left for future research,

these are detailed in Section 6.2, and could lead to further modification of the Trust

Vector model.

The rest of the thesis is laid out as follows:

• Chapter II covers background on the CyberCraft Initiative, the Trust Vector

model, and other work on trust in distributed systems.

• Chapter III analyzes the Trust Vector model and identifies some challenges

with fitting the Trust Vector model to the CyberCraft fleet. Sections 3.1 and

3.2 specifically cover paradigms and modifications of the Trust Vector model for

use in the CyberCraft Initiative.

• Chapter IV discusses the motivation and high-level design of two experiments

that address the value of historical data to the Trust Vector.

• Chapter V covers the specific implementation of the experiments.

• Chapter VI covers the results and analysis of the experiments.

• Chapter VII contains the conclusions drawn from the analysis and experiments.

The Future Work section identifies other problem areas and optimization issues

to be addressed by future research.
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II. Background

The CyberCraft Initiative is creating a set of standards that future cyberspace weapon

systems are to be built to. Because of the speed of operations in cyberspace, both

offensive and defensive, the CyberCraft will operate mostly autonomously. As military

operations become more dependant on systems that operate over cyberspace, the

fundamental research question for the CyberCraft Initiative is:

“What is required for a commander to trust a CyberCraft to autonomously
defend military information systems?” [11]

For the CyberCraft fleet to be given autonomy to act without human interven-

tion in the defense of our military networks, the CyberCraft Initiative must include

a mechanism in the system that specifies the trust the system has in the abilities of

its agents to perform an action successfully or report data accurately.

This chapter focuses on the background of the CyberCraft Initiative, the Trust

Vector model that was commissioned by AFRL for this project, and other work in

trust between distributed systems.

2.1 The CyberCraft Initiative

A CyberCraft is a system to provide command control and communications for

packages that defend Air Force information systems. [11] Analogous to an aircraft

flying in cyberspace, the CyberCraft can load various software packages (payloads)

to enable it to accomplish its mission. Various defensive missions that a CyberCraft

might be assigned include, but are not limited to:
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• Insider Threat Detection

• Intrusion Detection

• Policy Enforcement, especially as a response to a change in INFOCON

– Websurfing filters

– Host-based firewall management

– Unauthorized software

• Virus and Worm Detection and Remediation

• Network Vulnerability Scanning

• Reporting on host computer’s health

2.1.1 Components. As mentioned in the introduction, CyberCraft have two

components: Agents and Payloads. Agents can be hardware or software constructs

that live on a host computer. These agents have limited functionality, as the purpose

of an agent is to be the launching platform for the payloads. An agent is essentially a

three-way interface between the payloads, the host Operating System (OS), and the

network (through which the agent connects with the CyberCraft Command and Con-

trol (C2) structure). The agent’s mission then depends on what payloads are loaded

and the mission. The associated payloads may be assigned to an agent dependant on

the positioning of the agent (e.g., to perform a vulnerability scan of a base network,

the mission would be assigned to an agent inside the base network rather than on

a different base). Agents will be built to be generic with a long service life, so the
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interface between the agent and the payload, network, and host OS can incorporate

changes not yet conceived of, to best allow for flexibility of the agents. Using the F-16

example, an F-16 loads air-to-air armament to fly a Counter-Air sortie, or it loads

precision guided bombs for an interdiction mission. Like the F-16, a CyberCraft agent

can be assigned to different missions, but unlike an F-16, the same agent can load

payloads for multiple missions and accomplish these missions concurrently, or switch

between missions on the fly 1.

Payloads fall into three categories: Sensors, Decision Engines, and Effectors.

Sensors sample the environment and report on the sample. Decision Engines use

the data provided by the Sensors about the environment and decide how to change

the environment to conform with policy. Effectors are employed by the Decision

Engines to change the environment. All three payloads must incorporate trust, so

that the data supplied by the Sensors can be trusted by the other agents and the

warfighters to accurately represent the environment, the Decision Engines are trusted

to make correct decisions on how to change the environment (and if the environment

needs changing), and Effectors are trusted to successfully change the environment in

a predictable manner.

As various payloads allow the computer to accomplish different tasks, it is con-

ceivable that a network administrator uses the CyberCraft to dynamically change the

1The author concedes that an F-16 can carry multiple payloads and be switched from one mission
to another while in flight, but an F-16 is limited by the number of hardpoints on its wings and
fuselage, and limitations of geography and fuel prevent the F-16 from protecting an airbase while
also flying into enemy territory to drop bombs
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role of the host computers by loading different payloads to accomplish the mission.

For example, if the mail server is bogging down under heavy mail load, a policy trig-

gers the response of an agent on a workstation to load a mail server payload and serve

as another mail server until the mail queues had been reduced below the trigger level.

Another example is if a firewall crashed, another agent loads a firewall payload to take

the place of the crashed firewall, although this requires dynamic routing changes in

the network. Using the CyberCraft for dynamic network management requires several

policies to specify the roles a computer may take on, a hierarchy for which computers

change roles first, and when to implement a change in roles. Using CyberCraft in this

way would make a network more robust and help ensure continuity of operations.

Another possibility is to use the CyberCraft to capitalize on dormant computing

power. The CyberCraft could store computationally intense tasks, like breaking en-

emy cryptography with payloads that attack a small segment of the task. Periodically,

a network monitor seeks out computers that are under-utilized, e.g., most desktops

in a squadron after duty hours), and load a portion of the task and the payload into

the agent resident on that system, and use the dormant computer to accomplish a

small bit of the task. Thus, seemingly impossible tasks requiring years of computing

power can be accomplished relatively quickly by distributing the task to computers

that are otherwise unused.
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An example of what a fleet of CyberCraft could do is the defense of a zero-day

attack worm2. CyberCraft assigned to the Intrusion Detection mission encounter the

worm attack and use their sensors to determine that the worm traffic is not normal

and block the unknown traffic. Other sensors then analyze the traffic and produce

a signature for this new attack, and distribute this signature to the other agents in

the fleet. The other agents then use effector payloads to inoculate the host network

against this particular worm.

2.1.2 Fundamental Problem Areas. The six Fundamental Problem Areas for

the CyberCraft Initiative reflect what problems need to be solved to build an effective

CyberCraft fleet.

Map and Mission Context: The CyberCraft fleet will combine data to paint a

single multilayered Common Operating Picture (COP) for the Cyber-domain.

The different layers of the picture correspond to different aspects of the environ-

ment. An organizational view of the network shows the network health of the

different units, even if a unit’s computers and network devices are geographi-

cally and logically separated. A process view shows the various network nodes

and links needed to accomplish various missions. The logical view shows how

each computer was logically connected to the network through various switches

and routers, while the physical view shows geographical locations of the differ-

2Zero-day attack refers to a new attack against a previously unknown vulnerability. Most Anti-
Virus (AV) defenses are signature-based, meaning that the AV program requires the signature of an
attack to be saved in its database so the AV program can recognize and defend against the attack.
A zero-day attack does not have a published signature, so it bypasses most AV defenses
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ent network nodes and links. An example of how these views work together is

a NIPRNET (Non-Secure Internet Protocol Router Network) switch that sup-

ports a fighter squadron. In the organizational view, the switch appears under

the fighter squadron, while in the process view, the switch shows that it sup-

ports the missions of NIPRNET e-mail and websurfing for the fighter squadron,

but does not affect the mission of generating sorties or mission planning (e.g.,

a SIPRNET(Secure Internet Protocol Routing Network) switch ). The logical

view shows where the switch tied into the base’s NIPRNET backbone, and the

physical view shows where it was located in the fighter squadron’s building.

As all the views of the switch are based on data in the environment’s descrip-

tion of the switch, the system must be able to trust the data in the description

to paint an accurate picture. If a network scanner is untrustworthy and poten-

tially compromised, then the data from that scanner must be identified and the

part of the picture that is created from that data needs to identify that the data

is suspect, until the data can be verified as correct or incorrect.

Figure 2.1 shows the difference between different mapping contexts. At the

top, the Organizational view depicts units in the hierarchical structure of com-

mand. The middle shows the Process view of the components of the Weather

Squadron for producing a weather report. The bottom shows the network con-

nectivity for the base, identifying which buildings are connected to which switch

(useful for identifying which units are affected when a backhoe digs up the fiber

optic network backbone).
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Figure 2.1: Different Mapping Contexts.

Environment Description: A common language must be developed for all sensors

to describe the environment, so that data from any source is understood by

all agents and payloads that access the data. The environment description is

closely tied with mapping, as the system uses the description of the environment

to graphically display it to the user.

The environment description must include a confidence or trust value in the

data that is describing the environment. This area of research seeks to determine

what information about the environment needs to be sampled and shared, to
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provide enough information about the environment for a decision-maker, either

human or automated, to make decisions on how to change the environment. Too

much information hogs bandwidth and leads to delays in the decision making

cycle as irrelevant information is weeded out, while too little information leads

to incorrect assumptions about the environment and poor decisions.

An example of the resolution of the information is the reporting of the

Operating System (OS) of a target machine. If the target machine is running

Windows XP Service Pack 2, would a decision engine need to know all that

information about the target machine, or just know that it was a Windows

system?

Another challenge in the environment description language is the trust of

a datum. If an agent with low trust reports that a target machine is running

Windows XP and an agent with higher trust reports that the machine is running

Linux, which answer is correct? Is it possible that the more trusted machine

made a mistake, or that the target machine is running Windows XP on the

hardware and running Linux inside a virtual machine, so both views are correct?

This challenge is addressed by the introduction of a trust model to the system,

but the trust model must be modified so that both views of the system are

accepted as possibly correct, to take into account of the possibility of virtual

machines.

CyberCraft C3 Protocols and Framework: Another research area for CyberCraft

is the method for Command, Control, and Communications (C3), which details
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how agents communicate between each other. Currently the prototype Cyber-

Craft agents communicate via a distributed file store, where all agents listen

to locations in the store for new policies and orders, and data posted by one

agent to the store can be read by all agents. As scalability becomes a con-

cern, this distributed store may become unwieldy, and another solution must be

implemented.

Another concern is re-establishing communications if communications with

an agent or group of agents has been lost. If the CyberCraft fleet has been

segmented, then the different segments may continue gathering data, making

decisions, and changing the environment independent of the other segments.

When communications between the segments is restored, there may be conflict-

ing data and policies between the two segments. The deconfliction of conflicting

data and policies is a research area that needs to be addressed.

Formal Model and Policy: To formally prove the CyberCraft standards, a formal

model must be built to describe the set of states that the CyberCraft can be in.

Adding a trust model to the CyberCraft adds another set of factors to the set

of possible states. The formal model of the CyberCraft must mathematically

prove the state transitions of the CyberCraft so that with known inputs the

output of the system is predictable. Jøsang theorized that trust in a system can

be derived from one’s trust in the formal modelling process of that model [12].

An application of this theory is presented in Section 3.1.1.
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By formally defining the set of actions, events, and states, it is possible to

predict the behavior of the system by simulating a desired course of action in the

formal model of the system. Future work on the formal model may be able to

incorporate a stochastic representation of the environment, so that probabilities

of outside events could be modelled and the effects on the system be predicted.

Simulating a desired course of action with the CyberCraft fleet enables

planners to estimate the success of an operation in the cyber-domain with an

attached level of confidence. By integrating a trust mechanism, the formal

model of the CyberCraft fleet can achieve a greater granularity for predictions.

Rather than estimating the probability for a particular action, the values of

the trust model give a level of trust in the ability of a particular agent to

successfully accomplish an action. This enables planners to incorporate not

only the probabilities of the payload (e.g., a certain patch has a 90% probability

of being successfully installed), but also the abilities of each agent (e.g., the

agent that is using the patching payload to install patches on remote machines

has a known weakness in installing patches on Windows Server 2003 machines,

therefore the probability of a successful installation is lower by using this agent

rather than another agent).

This research is strongly focused on the application of trust towards sim-

ulation of a desired course of action. While the Trust Vector model benefits

other Fundamental Problem Areas such as the Environment Description, this
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research tailors the experiments to show the benefit of a trust metric to predict

future system behavior.

When a trust model in integrated into the CyberCraft, the trust model must

also be formally proven. The Trust Vector model provides concrete mechanisms

for determining the level of trust in a relationship, so mathematically proving the

Trust Vector model is easier than a trust model with less well defined evaluation

mechanisms.

Self-Protection Policy: Self-Protection Policy refers to the ability of the Cyber-

Craft fleet to conduct assured operations. This research area incorporates anti-

tamper/software protection research, but also needs a mechanism to identify a

compromised agent so that a compromised agent does not pollute the data used

by the rest of the CyberCraft fleet. The Self-Protection Policy research area is

tied to the Formal Model and Policy research area in that the Formal Model

provides a prediction of good behavior, and the one self-protection method is to

watch for unpredictable behavior from the local agent (self) and remote agents.

The Self-Protection policy also helps to protect an agent from compromise by

adding mechanisms to each agent similar to the work on the Trusted Platform

Module (TPM) [21]. A trust model aids in enabling agents to identify which

agent has been compromised, and adjust their interpretation of compromised

agent’s data appropriately.

CyberCraft Package Interfaces: CyberCraft agents need interfaces between the

agent and the host OS, the agent and the network, and the payloads. This
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research area is tied to the C3 Protocols and Framework, as the CyberCraft

agent is an information conduit between the network (and by extension, the

CyberCraft C2 structure), the host OS, and the payload. These interfaces must

be simple and give agents the flexibility to load new types of payloads created

after the agents have been built, as well as be able to accommodate changes to

the host OS.

As the CyberCraft agents incorporate a trust model, this trust model must

be able to sample the data received from the interface (OS, payload, or network),

and evaluate the data received to ensure that the data has not been compro-

mised. If the host OS or payload is compromised, it could be used to inject bad

data into the agent, and if the network is compromised, the C2 structure could

be spoofed and misleading commands or data could be introduced to the agent.

2.2 Trust Vector Model

In most trust models, trust between computers or software agents is defined

in boolean terms; either an agent completely trusts another agent or it does not

trust the other agent (covered in Section 2.3). Boolean trust is a good paradigm

for authentication, as either a remote agent is or is not the entity they claim to be.

In transactions between distributed entities where there could be ambiguity, such as

transferring stock tips or buying items on an online auction site, a range of trust is

more useful to the trusting party. If agent Alice has a track record of 70% good data,

a user of that data (automated or human) assigns more merit to new data from Alice
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rather than from agent Bob which has a 50% good data track record. The user must

not give complete trust to the data from Alice, as historically Alice has provided bad

data 30% of the time [16].

In order to describe a range of trust between two agents, Ray and Chakraborty

developed the Trust Vector model, where trust is defined as a vector with three

components, experience (past performance of remote agent), knowledge (ability of

remote agent), and recommendations (from other agents regarding their trust in the

remote agent) [17]. By their admission, these three components are not the only

components that can be used to determine trust. The range of trust is a real and

spans from complete trust (represented as +1) through no trust (0) to complete

distrust (−1). Distrust differs from no trust in that distrust indicates a level of

confidence that the information is incorrect rather than total uncertainty about the

veracity of the information.

This Trust Vector model also incorporates a degradation function which repre-

sents that trust (or distrust) lessens over time to approach 0 or no trust. Modelling

trust between humans, as time passes the trust one agent has in the other slowly de-

grades as the remote agent’s abilities may have changed, or the data provided becomes

stale.

The CyberCraft agents will operate in a world of ambiguity, where data may be

partially true, and agents may vary in their ability to provide accurate answers. From

a defensive standpoint, computer attacks are becoming increasingly sophisticated, not
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only in the penetration and exploitation, but also in stealth and hiding the damage

done. A network attack may look like legitimate mundane traffic, and legitimate

traffic may appear to be a network attack to certain sensors. If an e-mail spam filter

labels 60% of all messages from .gov domains as spam, even if it correctly labels 99.9%

of all Viagrar e-mails as spam, the filter is not trusted as much as a similar filter

that did not block the .gov e-mails. The spam filter that does block the .gov e-mails

is not always incorrect, and there is benefit in using its input in determining what

is spam and what is not. Trust models that do not provide a range of trust either

accept or reject all recommendations from the spam filter. By using a trust model

that represents trust as a range of values, the inputs from the filter are flagged with a

trust value and evaluated with inputs from other filters to provide a recommendation

to an automated evaluator if a specific e-mail is spam or not.

As the CyberCraft agents are deployed over a large number of systems and

loaded with diverse payloads, much of the data received from the different agents

about the same event may differ, and the trust model employed by the CyberCraft

fleet must be able to describe the trust that an agent or automated decision maker

has in the agent reporting the data. When the data about an event is evaluated, data

from less reliable sources is given less weight than data from more reliable sources. If

the only data about an event comes from an unreliable source, then that data may

be used, but the confidence in that data is appropriately noted.

An example of this is an agent whose data has been mostly wrong, perhaps

because the agent has been compromised and fed incorrect data. New data from
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the agent is presumed to be wrong, and the actual data presumed to be something

other than what is reported (e.g.,the unreliable agent reports that a machine is not

infected by a worm, but because the same agent has reported many other machines

that were infected by the worm as being clean, the evaluating agent may presume

that the target machine is infected by the worm).

2.2.1 Trust Vectors Overview. A trust vector is valid in a specific context;

one agent may have multiple trust vectors for another agent in different contexts,

denoting that it trusts the data from the other agent differently depending on the

context of the data. The experience component is based on previous data received

from the remote agent and the veracity of that data. The knowledge component is

based on the knowledge one agent has about the abilities of the other agent in that

context. The recommendation component is the sum of the recommendations of other

agents on the trustworthiness of an agent in that context weighted by the trust the

receiving agent in the recommendation context of the other agents.

Another aspect of trust that the Trust Vector model incorporates is that trust

degrades over time unless constantly refreshed [17]. For example, I regularly took my

car to an auto mechanic named Eddie for two years, and I built a trust relationship

with Eddie in his ability to fix my car (as I kept using Eddie, the value of the trust

relationship should be positive). If I do not have my car serviced for a year, and

then needed to have the car repaired, I remember that I had a good trust relationship

with Eddie, but my trust is not as strong as if I had Eddie change my brake fluid
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a month ago (and updated the trust relationship). This is because Eddie had been

good in the past, but I do not know if he is still as competent. Likewise, a negative

trust relationship with Eddie approaches neutral trust over time, as Eddie may have

learned some new skills since I used him last. The degradation function is covered in

Section 2.2.4.

2.2.2 Components. To illustrate how the different parts and components of

the Trust Vector model work together to provide a value for trust, I’ll use the scenario

of hiring a babysitter. While this may not sound related to computer security, the

Trust Vector model can easily be applied to the building of my trust in a potential

babysitter to watch my child. To start, I have multiple trust vectors with different

contexts for each potential babysitter. While I have a high level of trust in a 16 year

old girl’s ability to watch my infant, I have a much lower level of trust in that same

16 year old to drive my sports car, and my level of trust in her recommendations of

other babysitters may also be different.

Table 2.1 lists the symbology used in describing the different components of the

Trust Vector model.

2.2.2.1 Experience Component. The experience component is based

on the past performance of the remote agent in the given context. The experience

component for the trust relationship between truster A and trustee B in context c is

written as AEc
B. Each event where the performance of the remote agent is evaluated

is given a value of trust positive (+) or trust negative (-). This collection of events
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is then divided by time into intervals. The values of the events in each interval are

summed to produce a single value for that interval. If the interval from t0 to t1 has

four events, three trust positive and one trust negative, the value of that interval is

+2. Each interval is weighted based on the number of intervals, n, and the position

of each interval, i. The weight for each interval is calculated by the formula wi = i
S

where S = n(n+1)
2

. Figure 2.2 shows the calculation of an experience component with

6 intervals and an interval width of 4. The intervals are numbered from 1 to n (where

n is the number of intervals) starting with the oldest interval.

Older intervals are weighted less than more recent intervals. The length of an

interval is arbitrary, and the number of events that occur in an interval may not be

Table 2.1: Symbology used to describe the components of the Trust Vector Model.

Symbol Meaning
(A c−→B)t Trust Vector from agent A to agent B in context c
(A c−→B)N

t Normalized Trust Vector from agent A to agent B in context c
v(A c−→B)N

t Value of the Normalized Trust Vector from agent A
to agent B in context c

AEc
B The experience component for agent A’s

trust vector to agent B in context c

AKc
B The knowledge component for agent A’s

trust vector to agent B in context c
Ψ A group of recommenders when

building the recommendation component

ΨRc
B The recommendation component for agent A’s

trust vector to agent B in context c
wi The weight assigned to the i interval when

calculating the experience component. wi = i
S

S Used to calculate wi where S = n(n+1)
2

where
n is the number of intervals

Vj A recommendation from a recommender j
In this implementation of the Trust Vector model,
Vj = v(j c−→B)N

t for recommended agent B
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Figure 2.2: Calculation of the experience component.

constant, but the weighted value of each interval is normalized between −1 and +1 by

dividing each weighted value by the number of events in the interval. In Figure 2.2, the

weight of the oldest interval is 1
21

or 0.048, derived from the equation wi = i
S

= 1
21

,

as S = n(n+1)
2

= 6(7)
2

= 21. The normalized value is calculated by dividing the

value of the interval by the interval width (i.e. the greatest possible value for the

interval). In Figure 2.2, the normalized value for the first interval is value
interval width

= 1
4

or +0.25. After weighting the normalized value, the weighted value of the first interval

is 0.25 · 0.048 = 0.012. Summing the weighted values of all intervals, the value of the

experience component in Figure 2.2 is 0.16̄.

Now back to the Babysitter scenario; I’ve hired the babysitter many times be-

fore, and in the first few times that she has watched my daughter, I had bad (trust-

negative) experiences with her. Five weeks ago, the house had toys strewn all over,

the child was screaming, and her diaper was dirty. In recent weeks, my experiences

with her babysitting have been good (trust-positive). Not only were the toys picked
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up and my child clean and happy, but the dishes were also washed. If my intervals

are weeks, then the recent weeks with good experiences count more than the weeks a

month past where I had bad trust experiences with her.

In Section 3.2.1 and Section 3.2.2, I propose modifications to Ray and Chakraborty’s

experience component. The first modification concerns evaluating events in a range

from [−1, 1] rather than as only trust-positive or trust-negative. The second pro-

posed modification suggests using variable length intervals which are set to fixed time

periods instead of a fixed number of events.

2.2.2.2 Knowledge Component. The knowledge component represents

the local agent’s knowledge about the remote agent’s abilities. The knowledge compo-

nent for the trust relationship between truster A and trustee B in context c is written

as AKc
B. An example of this is two remote agents each have a software package to

scan a network for vulnerabilities. If one agent’s package is known to have a high rate

of false positives (or false negatives), then the value of the knowledge component for

the context of scanning for vulnerabilities is less than the agent who has the more

accurate scanner. As different scanners have different false positive rates for the dif-

ferent vulnerabilities, a more granular approach is to have a trust vector for the local

agent’s trust in the remote agent for detecting each vulnerability, but this leads to

scalability issues with the amount of data being stored for multiple trust vectors.

Babysitter scenario: The knowledge component is where I account for the

babysitter’s knowledge about how to do her job. If she has taken an infant Cardio-
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Pulmonary Resuscitation (CPR) class from the Red Cross and had earned her Babysit-

ting merit badge from Girl Scouts, her knowledge component is higher than the

babysitter who had neither of these qualifications. When calculating my trust vector

for the babysitter in the context of driving my sports car (a 2001 Honda Prelude SH,

with 200 horsepower and 5 speed manual transmission), my knowledge of her young

age (and driving inexperience) and inability to drive a manual transmission gives her

a low value for the knowledge component.

Ray and Chakraborty proposed the knowledge component to have two subcom-

ponents, direct knowledge and indirect knowledge, but did not mention a method for

determining the values for either. In Section 3.1.1, I propose a method for setting the

initial values of the indirect knowledge subcomponent, and in Section 6.2.5 I discuss

future research areas for dynamically changing the knowledge component.

2.2.2.3 Recommendation Component. The recommendations compo-

nent is updated through querying other agents about their trust with the remote

agent. For example, Alice is querying David about Bob. David’s recommendation is

tempered by Alice’s trust in his ability to give an accurate recommendation. If David

has a history of making poor recommendations, then Alice trusts his recommendation

less than one from an agent that has a better history for accurate recommendations

(Cathy). The recommendation component between Alice and Bob for context c is

written as ΨRc
Bob where Ψ represents a group of agents with recommendations to Alice
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about Bob. In Figure 2.3, Ψ includes Cathy and David. The equation for summing

the recommendations is:

ΨRc
Bob =

Σn
j=1|v(Alice

rec−→j)N
t |·Vj

Σn
j=1|v(Alice

rec−→j)N
t |

.

where the numerator represents the sum of recommendations weighted by the Alice’s

trust value in Cathy and David, and the denominator represents the sum of Alice’s

trust values to normalize the answer to between [−1, 1].

Figure 2.3: Demonstration of the recommendation component.

Figure 2.3 shows the example of Alice requesting recommendations from Cathy

and David for Bob in the context of data reporting. Cathy’s trust value in Bob

for data reporting is 0.63 (v(Cathydata−−→Bob)N
t = 0.63), and David’s trust in Bob is

v(Daviddata−−→Bob)N
t = 0.28. Alice’s trust value in Cathy for recommendations is 0.75

(v(Alicerecommendation−−−−−−−−−−−−→Cathy)N
t = 0.75), and Alice’s trust in David for recommenda-

tions is v(Alicerecommendation−−−−−−−−−−−−→David)N
t = 0.50. So as Ψ represents Cathy and David,

ΨRdata
Bob = (0.75·0.63)+(0.50·0.28)

0.75+0.50
= 0.4438. The value of ΨRdata

Bob is closer to 0.63 than to

0.28 as Alice has higher trust in Cathy’s recommendations than in David’s recom-

mendations.
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A problem with this equation is the use of absolute values with regards to the

trust that the truster (Alice) has to the recommender (e.g., David). If Alice’s trust

value to David is negative, indicating distrust with the David’s recommendations,

then using the absolute value of the trust value negates the indication of distrust, and

uses the recommendation as if the Alice has the level of trust in David as Alice’s

level of distrust in David. Thus the recommendation from a highly distrusted agent

is weighted more than the recommendation from a somewhat trusted agent. This

equation is analyzed further in Section 6.2.6.

For the Babysitter scenario, the recommendation component is equivalent to

my asking other parents that the babysitter had worked for about their trust in her

ability. While getting recommendations from other parents, I use my trust in those

parents’ abilities to give a good recommendation to modify and normalize their rec-

ommendations. If the mother with a heart of gold and not an unkind word for anyone

had given me a couple inaccurate recommendations in the past, I would value her rec-

ommendation less than the mother who had only given me accurate recommendations

for other babysitters.

Table 2.2: Symbology used to describe the Trust Policy Vector.
Symbol Meaning

We The weight assigned to the experience
component by the trust policy vector

Wk The weight assigned to the knowledge
component by the trust policy vector

Wr The weight assigned to the recommendation
component by the trust policy vector

30



2.2.3 Trust Policy Vector. Each component of a trust vector ranges in value

from −1 to +1. To produce a single value for trust, a Trust Policy Vector is applied to

the trust vector. The symbology for the Trust Policy Vector is listed in Table 2.2. The

Trust Policy Vector has the same components as the trust vector, and each component

of the trust policy represents the associated weight placed on the components of the

trust vector, thus We,Wk,Wr represent the weights of the experience component,

knowledge component, and recommendation component respectively. We,Wk,Wr ∈

[0, 1] and We + Wk + Wr = 1. By multiplying the value of each component of the

trust vector by the corresponding weight and summing the product

We ·A Ec
B + Wk ·A Kc

B + Wr ·Ψ Rc
B ∈ [−1, +1]

a single value between −1 and +1 is produced, where −1 indicates total distrust of

the remote agent, 0 indicates lack of both trust and distrust of the remote agent, and

+1 indicates complete trust.

Continuing with the babysitter analogy from the previous subsection, my trust

policy vector for hiring a babysitter is based on how much I valued each component.

I put more weight on experience, only a little weight on knowledge, and some weight

on recommendations, so my trust policy vector looks like We = 0.5,Wk = 0.15,Wr =

0.35. If I did not have many friends to give recommendations about the babysitters

that I am looking to hire, and I don’t have very much experience with any babysitters,

then I reduce both the weight on experience and the weight on recommendations and

put more weight on knowledge (We = 0.25, Wk = 0.6,Wr = 0.15).
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Table 2.3: Symbology used to describe the degradation function.

Symbol Meaning
ti The time at event i
tn The time at event n
τ Period of decay, used to calculate ∆t
∆t The difference between time ti and time tn

∆t is unitless, and is expressed as tn−ti
τ

Tti A Trust Relationship at time ti
v(Tti) The value of the Trust Relationship at time ti
v(Ttn) The value of the Trust Relationship at time tn

k Rate of decay

v(Ttn) = v(Tti)e
−(v(Tti )∆t)2k

Degradation Function
α Weight corresponding to present normalized vector
β Weight corresponding to time-dependant vector (1− α)

Ttn Time-dependant trust vector at time tn
Derived from Ttn = [v(Ttn)

3
, v(Ttn)

3
, v(Ttn )

3
]

v(T̂ )
3

The value of each component of the time-dependant trust vector

2.2.4 Degradation Function. As mentioned in the background, the Trust

Vector model has a degradation function to calculate the current value of trust based

on a past value. Figure 2.4 shows how the trust value of a trust relationship approaches

0 or no trust as time increases. Table 2.3 lists the symbology used for the degradation

function.

The degradation function described by Ray and Chakraborty is

v(Ttn) = v(Tti)e
−(v(Tti )∆t)2k

where v(Tti) is the trust value of a trust vector (Tti) at time ti and v(Ttn) is the

degraded value at time tn, and ∆t = tn − ti and k is an integer greater or equal to 1.

The value for k is arbitrary and determines the rate of decline. Figure 5.5 in Chapter

V shows the effects of different values of k.
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Figure 2.4: Trust degradation as time increases.

To calculate the normalized trust relationship at the present time (A c−→B)N
tn ,

where the present time is represented by tn, the values of the previous trust vec-

tor and the present trust vector are combined. The values of α and β are used to

weight the present vector and the time-dependant (past) vector respectively. The

trust relationship at the present time is calculated :

(A c−→B)N
tn =





tn = 0

[AÊc
B,A K̂c

B,Ψ R̂c
B]

tn 6= 0 and AÊc
B =A K̂c

B =Ψ R̂c
B = 0

[v(T̂ )
3

, v(T̂ )
3

, v(T̂ )
3

]

tn 6= 0 and at least one of AÊc
B,A K̂c

B,Ψ R̂c
B 6= 0

[α ·A Êc
B + β · v(T̂ )

3
, α ·A K̂c

B + β · v(T̂ )
3

, α ·Ψ R̂c
B + β · v(T̂ )

3
]
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As Ray and Chakraborty state in their paper [17], the speed of decay is depen-

dant on the truster’s policy. Parameters of the degradation function can be set so

that the value of a previous trust vector approaches zero in at different time periods.

In Section 5.2.1, I cover my analysis of the degradation function and recommend a

modification to the function.

2.2.5 Vulnerability Assessment Scenario. To illustrate how the three com-

ponents of trust work together we consider a scenario where three agents are scanning

the same network for vulnerabilities. This scenario assumes that all agents share and

evaluate results immediately after the scan completes.

• Agent 1 has a high false positive rate when scanning for a particular vulnera-

bility.

• Agents 2 and 3 are accurate when scanning for the same vulnerability.

All agents have two trust vectors for each of the other two agents; one vector

for the remote agent’s ability to scan for the vulnerability, and another vector for the

remote agent’s ability to provide accurate recommendations.

Each agent also has two trust vectors to themselves; one for their trust in their

scanning ability, and the other for their ability to provide accurate recommendations.

These vectors enable the agent to self identify as possibly producing bad data if the

value of the trust vector to itself drops below a certain level. If Agent 1 receives

recommendations from the other agents that Agent 1 is reporting systems vulnerable

when they are not (due to the high false positive rate), Agent 1’s trust vector to itself
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for its scanning ability decreases in value. As the value of the trust vector drops,

Agent 1 has less trust in its own data, acknowledging that it may be compromised or

have a problem with its scanning software.

Figure 2.5: Scenario of Agents 1, 2, and 3 scanning the same computer.

While scanning the network for a vulnerability, Agents 1, 2, and 3 scan the same

workstation (Figure 2.5). Agent 1 reports that the workstation is susceptible to the

vulnerability, and Agents 2 and 3 report the workstation is not vulnerable.

• Agent 1 records this event as trust negative (−1) for its trust vectors for Agents

2 and 3’s scanning abilities.

• Agent 2 records this event as trust negative (−1) for its trust vectors for Agent

1, and trust positive (+1) for Agent 3.

• Agent 3 records this event as trust negative (−1) for Agent 1, and trust positive

(+1) for Agent 2.
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Over time, as more computers are scanned, the history of events is populated and

the experience components of the trust vectors for scanning can be calculated. If

Agent 3 needed to make a determination as to whether or not the scanned box had

the vulnerability, it modifies each result by its trust value for the agent that supplied

each result. After modifying each result, Agent 3 then combines the three results

to produce a single value which represents its confidence that the target machine is

vulnerable or is not vulnerable.

If Agent 1 received data about a target computer that it did not scan, it is able

to make a determination as to the state of that computer based off of the trust it has

in the agent reporting the data.

An advantage of this approach of using multiple machines and multiple scanning

techniques is that if a compromised computer is configured to hide vulnerabilities from

a particular scanner, as other scanners detect the vulnerability the trust vector system

notes that there is a problem with the scanner that is being spoofed (in addition to

identifying the compromised computer).

2.3 Other work in trust between computers

Yahalom, Klein, and Beth build a boolean trust model [24] that models the

passing of authentication data inside a network. Part of this model (YKB model)

establishes a formal method for the creation of new trust relationships from existing

relationships. The YKB model allowed the trust relationships to be chained to build

trust relationships between entities that exist more than one degree of separation
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apart (Entity A trusts B, B trusts C, C trusts D, therefore A trusts the D because C

trusts D, B trusts C for C’s trust to D, etc.).

This transitivity of trust can be modelled by the Trust Vector model by the use

of the recommendations of agents with existing trust vectors to the remote agent to

build an initial trust vector from a local agent to the remote agent. The Trust Vector

model can also chain trust as long as there is some path between agents of existing

trust vectors. If a path does not exist, then an new trust relationship between the

local agent and remote agent can be built.

Yahalom, et al. [24] appears to be the seminal work on most formal distributed

trust models. The YKB model defines trust classes which are analogous to the context

of a trust relationship in the Trust Vector model, and made a distinction between

direct trust, trust directly calculated by an agent, and recommendation trust, trust

passed to the local agent by a recommender.

Beth, Borcherding, and Klein [5] expand on Yahalom, Klein, and Beth [24]. The

expanded model (BBK model) adds degrees of trust to the previous model, based on

the summation of positive experiences. The degree of trust is based upon the reliability

of the remote entity, calculated vz(p) = 1−αp, where vz is the value of the number of

positive experiences p, and α is an arbitrary number between 0 and 1. The value of p

(vz(p)) represents the probability that the remote agent is more reliable than α. which

should be large enough to safely estimate the reliability of the remote agent. Thus,

if the local agent has 20 positive experiences with a remote agent and an α = 0.85,
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the reliability of the remote agent is estimated at vz(20) = 1− 0.8520 = 0.96124. Any

negative experience causes the remote agent to become untrusted. This differs from

the Trust Vector model, as a negative experience is recorded and lowers the trust in

the remote agent, but the BBK model retains the boolean trust paradigm of Yahalom,

Klein, and Beth’s.

Jøsang does not define a trust model [12], but rather examines and defines trust

in his paper. He defines trust differently between passionate entities(e.g., humans) and

rational entities(e.g., computers). Trust in a passionate agent is defined as the belief

that the trusted entity does not behave in a malicious (i.e. dishonest and unlawful)

manner, while trust in a rational entity is defined as the belief that it resists malicious

manipulation by a passionate entity. Jøsang continues with the observation that

trust between humans as being based on faith, and that trust in distributed systems

should be based upon knowledge, where knowledge represents the information used

to determine trustworthiness. Figure 2.6 shows how the final trust in a service (a) is

produced from current knowledge about the service (representing direct trust in the

service), or is derived from the Trust derivation mechanism in the system about the

service (b), which represents derived trust. If a is derived from b, the derived trust

becomes explicit and becomes direct trust. In Figure 2.6, the trust in the system (c)is

derived from the formal verification of the model (d), which is based on knowledge

about the formal verification process (e).

In the Trust Vector model, derived trust is the trust calculated by the Trust

Vector system, and direct trust is the current trust value after it has been derived.
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Figure 2.6: Trust Based on Knowledge (Jøsang ).

The Trust Vector model updates the trust value as new data is received and evaluated,

so a trust relationship is constantly being derived. Direct trust only occurs if no new

information had been received since derived trust was calculated, and this departure

from Jøsang’s paper occurs because the Trust Vector model does not use boolean

trust, but rather the range of trust. In a boolean trust model, a service or entity is

trusted until that service performs an action that results in the loss of trust, while a

non-boolean model needs to constantly determine the level of trust attributable to a

service or entity.

Jøsang completes his paper with an evaluation on the differences between secu-

rity and reliability. Between passionate entities security is derived from the trust in

the other entity’s benevolence, and reliability is derived from trust in the other en-

tity’s skill and experience. To trust a rational entity for security, the rational entity’s
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strength against manipulation is used, while trust in reliability is based on knowledge

of the rational entity’s capability for continuous operation. Using these definitions,

the CyberCraft Initiative seeks to capture the trust in rational entities reliability, but

substitute predictability for continuous operation as the basis for reliability.

Purser’s Graphical Model of trust introduces a range of trust (low, medium,

and high), and specifies that trust depended on the context of the relationship [15].

Purser’s model also incorporates an associated risk to the trust relationship that

indicates the potential damage caused by a breach of trust. Finally, the model uses

a transitivity attribute to indicate if the trust relationship held from one actor to

another actor can be passed on to a third actor. Figure 2.7 shows an example of

the trust from a patient to their doctor. The trust extends from the patient to the

doctor, the context is medical advice, the level of trust is high, the associated risk

with a breach of that trust is high, and the trust is transitive (e.g., a patient trusts

their doctor, the doctor trusts a surgeon, therefore if the trust between the doctor

and surgeon is transitive, the patient trusts the surgeon (in the context of medical

matters)).

Figure 2.7: Purser’s Graphical Model of Trust.

40



This model (which uses unidirectional arrows to indicate the trust relationship

from the truster to the trustee), is good for humans planning the trust between agents

or entities, as the resulting graph is visually intuitive to capture a large number of

trust relationships between multiple entities, but is not as useful to translate into code

representing trust between computers. The lack of trust mechanics and the ambiguous

levels of trust are difficult to manage trust between computers. The transitivity of

trust is somewhat analogous to the recommendations between agents in the Trust

Vector model.

Abdul-Rahman and Hailes’ trust model [3,4] is similar in many respects to the

Trust Vector model. Both Abdul-Rahman/Hailes’ model (A-R/H model) and the

Trust Vector model incorporate different contexts for trust. Trust is based on experi-

ences and recommendations (although Trust Vectors add a knowledge component as

well), and trust is not directly transitive (a recommendation is modified by the trust

in the recommender). The A-R/H model also incorporates degrees of untrustworthi-

ness, but trust values are discrete (Very Untrustworthy, Untrustworthy, Trustworthy,

and Very Trustworthy in [4], and Distrust, Ignorance, Minimal, Average, Good, and

Complete in [3]), rather than the continuous range used by the Trust Vector Model.

The A-R/H model constructs a message protocol for passing recommendations be-

tween agents, as well as equations for determining the trust value of a recommendation

path [3].

Xiong and Liu [23] proposed a trust model for peer-to-peer (P2P) eCommerce

transactions called PeerTrust. PeerTrust provides a range of trust relative to a peer’s
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performance in transactions based on feedback received from the other peers involved.

The PeerTrust model combines five factors to produce a value for the trustworthiness

of a peer. These factors are:

Feedback in Terms of Amount of Satisfaction: This is based on the feedback

from the other peer in an eCommerce transaction. Feedback is the basis for

most trust models in a P2P eCommerce environment.

Number of Transactions: As the name suggests, this is the number of transac-

tions performed by the rated peer in a given time period. This is included to

provide an average feedback score per transaction, as a skewed distribution of

transactions may not fairly capture the trustworthiness of a peer (e.g., the peer

who receives 6 negative feedbacks over 12 transactions is less trustworthy than

the peer who receives 7 negative feedbacks over 1000 transactions). eBayruses

a form of this when presenting the percentage of positive feedback an account

has received [1].

Credibility of Feedback: This factor captures potential threats of dishonest feed-

back. If a peer is providing negative feedback on positive transactions for a

malicious motive, a credibility factor captures the lack of trustworthiness of the

misbehaving peer’s feedback, and future feedback from this peer is adjusted

accordingly.

Transaction Context Factor (TCF): This factor is arbitrary and is set depending

on the community modelled, indicating which transactions are more valuable
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(and therefore, which deserve more weight when calculating trust). In an online

auction community, the TCF could be the dollar amount of the transaction,

showing that a peer could be trustworthy for lower dollar amounts, but shady

for larger dollar amounts. Thus the feedback from an expensive transaction

weighs more than the transactions for inexpensive transactions.

Community Context Factor: The community context is also arbitrary, and mod-

els factors important to a specific community. Xiong and Liu use the example of

a business community that uses historical ratings (trust ratings from outside the

captured time period) to help evaluate the peer based on consistent behavior.

Another example is a file sharing community (like pre-lawsuit Napster), where

the number of transactions that add new files to the community is used as the

Community Context Factor. This models the community’s desire to add more

music into the community, rather than have the same files swapped between

peers.

The inclusion of these five factors are to expand the common model of feedback

used in online auction sites that use just the feedback from the other peer in a trans-

action. The models used by online auctions assume that all feedback is honest, and

that no deception or ulterior motive is behind the feedback ratings. Other motivation

for this model was the perceived lack of incentives for one peer to rate another, the

lack of decrementing the weight placed on older ratings, the lack of context for the

ratings.
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This model can be used to provide several of the same abilities as the Trust

Vector model. The decay of older values can be modelled by the Community Context

Factor. The trust vectors for recommendations can be modelled by the Credibility

of Feedback factor. Different contexts in the Trust Vector model (e.g., trust in the

babysitter to watch my child vs. trust in the babysitter in driving my car) can be

modelled by two different instantiations of the PeerTrust model. The advantage that

the Trust Vector model has over PeerTrust for the CyberCraft Initiative is the Trust

Vector model’s experience component and degradation function handles the weighting

of recent data over older data more gracefully. Xiong and Liu’s PeerTrust model could

be expanded to include the experience weighting function of the Trust Vector model’s

experience component as well as the degradation function for historical data. These

incorporations should also include analysis of how much historical data must be kept.

Ray, Chakraborty, and Ray have built a model trust management framework

as an extension of the Trust Vector model [18]. In this framework, VTrust, infor-

mation about trust relationships is stored in a trust database. This framework uses

a modification of SQL named TrustQL to query the database for trust information.

This research did not address the use of VTrust, instead each agent storing its trust

data locally. In Chapter VI, the use and possible future research of VTrust in the

CyberCraft fleet is expounded upon.

Chakraborty and Ray also extend a variation of the Trust Vector model to the

control of privacy in online transactions [7]. The p-Trust model is similar to the Trust

Vector model, with the following differences:
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• A trust relationship in p-Trust is defined by four components, interactions,

properties, reputation, and recommendation. Properties and reputation were

subcomponents of the knowledge component of the Trust Vector model (direct

knowledge and indirect knowledge respectively).

• The concept of a null relationship or null value for a component is added. Values

of components and trust relationships now range from [−1, +1]∪{⊥}, with {⊥}

representing a null value.

• The recommendation component of p-Trust (RRECc
B)is analogous to the recom-

mendation component of the Trust Vector model (ΨRc
B). However, the equation

to normalize the p-Trust recommendation component does not use the absolute

value of the truster’s trust in the recommending agent (RRECc
B =

Σn
j=1v(A

c−→j)·Vj

Σn
j=1v(A

c−→j)
.

This may indicate that the equation for the Trust Vector model needs to be

updated.

The p-Trust model also categorizes violations of privacy into seven categories (Confi-

dentiality Breach, Integrity Breach, Information Exploitation, Personal Space Viola-

tion, Pretexting/Identity Theft, Anonymity Violation, and Linkability). Categorizing

potential violations of trust in the Trust Vector model could help to control the dam-

age if a violation occurs.
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III. Trust Vector Architecture

To use the Trust Vector model for the CyberCraft Initiative, the architecture of

the model must first be analyzed to determine how it should be integrated into the

CyberCraft design. This research focuses on what settings and modifications are

needed to use the Trust Vector model to integrate a trust metric to distributed agents

such as the CyberCraft fleet. This research also found areas for expansion of the

Trust Vector model, borrowing from other trust models that Section 2.3 covers. Most

of these expansions add to the Trust Vector model without changing the model, but

some of the modifications replace the implementation of a function or change how

certain data is interpreted and stored.

This chapter covers how to fit the architecture of the Trust Vector model to the

CyberCraft model. Section 3.1 covers existing properties of the Trust Vector model

and how they can be fit to the CyberCraft model. Section 3.2 covers the recommended

settings and modifications to the Trust Vector model.

3.1 Properties of the Trust Vector model

This section discusses new ways to use the existing properties of the Trust Vector

model. Some of the following sections cover ideas from other trust models that are

not explicitly mentioned in the Trust Vector model.

3.1.1 Knowledge Component. Ray and Chakraborty [17] discuss the two

subcomponents of the knowledge component, direct knowledge and indirect knowl-
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edge, but do not mention a mechanism for initially setting the values. As Jøsang

wrote in his paper [12], trust in a service can be derived from trust in the system,

which can be derived from the trust of the formal verification of the system. From

this, assigning higher values to the knowledge component of trust relations to the

formally modeled components of the CyberCraft is one way to assign an initial value

to the knowledge component. All CyberCraft agents will undergo a formal verifica-

tion, but not all payloads will. Thus a trust relationship in the context of using a

formally verified payload has a higher knowledge component than a relationship for

a non-verified payload. Not all payloads in the CyberCraft fleet need to be formally

verified. One of the advantages to the CyberCraft Initiative is it can use a payload

that is generated quickly and cheaply, therefore giving the CyberCraft fleet agility

in countering new threats. But a payload that is rushed into production may not

always behave as a formally verified payload, thus, the lower trust inherent in a lower

knowledge component.

Dynamically changing the knowledge component is an area of future research,

and is covered in Section 6.2.5.

3.1.2 Transaction Paradigm. Ray and Chakraborty do not mention the

paradigm the Trust Vector model must be used in. One paradigm uses multiple agents

to sample the same aspect of the environment (e.g., scanning the same computer

for vulnerabilities) and immediately exchange their results, and evaluate the results

of the remote agents. This synchronous or co-stimulation paradigm works well for
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the Trust Vector model, as each participating agent obtains a large amount of data

for the other participating agents and a robust experience component can be built.

This synchronous paradigm works well for determining which agents interpret the

environment differently than the other agents. Systems like an Air Traffic Control

(ATC) network or the multiple guidance computers on the Space Shuttle operate in

synchronous paradigm.

When CyberCraft is implemented, it is unlikely that multiple agents can imme-

diately sample the same aspect of the environment to evaluate the data produced by

an agent. Currently CyberCraft communicate via the Pastry [19] implementation of a

Distributed Hash Table (DHT), which is used as the Information Store, where all data

(environment descriptions, policies, payloads, etc.) resides. Information gathered by

agents is posted to the Information Store and is accessible by any other agent. This

may lead to scalability and communication issues later, but this example is based on

the premise that a version of the Information Store exists in the final implementation

of CyberCraft. The data a CyberCraft agent posts to the Information Store may not

be immediately evaluated by another agent, and when the data is accessed, the ac-

cessing agent may not have the means to verify the data. This transactional paradigm

is closer to the way an eCommerce environment such as eBayrworks.

Xiong and Liu’s paper [23] discuss the use of trust for an eCommerce environ-

ment, an example being an online auction community (e.g., eBayr). In an online

auction, each purchase of an item represents two transactions, the buyer receiving the

goods purchased and the seller being paid by the buyer. After each transaction, the
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recipient of the transaction is able to rate their satisfaction with the transaction. If

a buyer purchased a compact disc (CD) and the CD was scratched, the buyer would

have a low satisfaction with the transaction. The satisfaction value of each trans-

action builds the trust that a buyer has with a seller that future transactions will

be enjoyable. A history of low satisfaction with transactions indicates that future

transactions are more likely to also disappoint.

Extending the transactional paradigm of an online auction to CyberCraft, data

produced by an agent (Alice) is posted for other agents to access. When another

agent (Bob) accesses the data, the data is evaluated for usefulness and veracity, and

the evaluation is saved as a trust event in Bob’s experience with the Alice.

In the following scenario, a transaction is the receiving of data (reading data

from the Information Store) or the receiving of recommendations. The validity of

the data or recommendation influences the evaluation of the satisfaction of the trans-

action. Good data or good recommendations lead to a good feedback score. The

feedback score is then interpreted as the value of that event in the experience compo-

nent. Figures 3.1 to 3.5 show how the Trust Vector model is used in a transactional

paradigm.

In Figure 3.1, Alice gathers data about the environment and posts the data to

the Information Store. All data posted to the Information Store retain the identity

of the author and the time posted to the store for attribution purposes. The data

for the trust relationships, including recommendations, is stored in the Information
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Figure 3.1: Transactional Paradigm: Alice posts data to the CyberCraft Informa-
tion Store.

Store, and therefore an agent’s recommendations are available to other agents. Bob

Figure 3.2: Transactional Paradigm:Bob retrieves Alice’s data from the Information
Store.

queries the Information Store for information about the environment and retrieves the

data posted by Alice (Figure 3.2). Bob has an existing trust relationship with Alice,

and applies the trust value of that relationship to the analysis of Alice’s data. Bob

then evaluates the usefulness of Alice’s data and records the evaluation as an event

in the trust relationship between Bob and Alice. The value of the trust relationship

is possibly altered positively or negatively depending on the results of the evaluation

of the data.
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Figure 3.3: Transactional Paradigm: Cathy also retrieves Alice’s Data from the
Information Store.

Cathy also retrieves Alice’s data (Figure 3.3), but does not have a trust relation-

ship with Alice. Therefore, to build a trust relationship, Cathy queries other agents

(Bob, David, and Ethel) for recommendations about Alice’s trustworthiness (Figure

3.4). This is accomplished by retrieving Bob, David, and Ethel’s recommendations

about Alice from the Information Store.

Figure 3.4: Transactional Paradigm: Cathy queries other agents for recommenda-
tions about Alice.

In Figure 3.5, Cathy receives recommendations about Alice’s trustworthiness

from Bob, David, and Ethel. These recommendations are then modified by Cathy’s

trust in each recommender to provide a good recommendation. If David did not have
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Figure 3.5: Transactional Paradigm: Bob, David, and Ethel send recommendations
to Cathy.

a trust relationship with Alice, David’s recommendation is 0, or trust neutral with

regard to Alice.

As the values of trust vectors are influenced by the Trust Policy vector, it may

be useful to dynamically determine the Trust Policy vector. In the above example,

when Cathy is requesting recommendations about Alice, it makes sense to put more

weight on a recommendation from someone who has many transactions with Alice

(and therefore a more populated experience component) than a recommendation from

an agent with only a few transactions with Alice. Similarly, if Bob has a long history

of transactions with Alice, Bob may want to put more weight in his experience with

Alice, while an agent with few transactions with Alice may want to put less weight

on their experiences with Alice and more weight on recommendations to determine

the trust value.

3.1.2.1 Challenges with the Transactional Paradigm. One problem

with using the transactional paradigm over the synchronous paradigm is an agent

52



that is producing data that few other agents read only has trust relationships with

those few other agents. This can lead to problems in chaining trust (see Section

3.1.3), as well as a greater possibility of bad recommendations. An example of this

shortcoming is an agent (Alice) that posts data to the store that is generally only

read by a one other agent (Bob). If a new agent (Cathy) reads the data and needs to

create a trust relationship with Alice, the only other agent with a trust relationship is

Bob. If Cathy did not have a trust relationship with Bob for recommendations, Cathy

needs to create the trust relationship to Bob for recommendations by querying which

other agents have a trust relationship to Bob for recommendations, and building the

trust relationship to Bob from recommendations from these other agents (assuming

that Cathy does not then need to build new trust relationships for recommendations

to the agents that have existing trust relations to Bob, etc.). Once Cathy establishes

a trust relationship to Bob for recommendations, because Bob is the only one with a

trust relationship to Alice for data, Cathy’s new trust relationship to Alice is based

entirely on Bob’s recommendation.

If two agents, Cathy and David are both compromised, and Cathy posts bad

data to the Information Store and David gives positive feedback to Cathy, unless

other agents also evaluated Cathy’s bad data, David’s trust in Cathy is presumed to

be genuine, and Cathy’s data is trusted when it should not be.

Another challenge with the transactional paradigm is that without immediate

evaluation of data, the trust in the agent may not accurately reflect the veracity of

the data. If an agent (Alice) posts accurate data at t0, then posts bad data from
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t0.5 on, and the data is not read until t1, what trust does another agent (Bob) assign

to the data? Does Bob remember the trust he had with Alice at t0? If so, should

he apply that knowledge to Alice’s data? Bob knows that Alice has recently posted

bad data, but he does not know when Alice started posting bad data. If Alice is not

compromised, but the accurate data that she posted at t0 is now wrong (e.g., Alice

detected a vulnerability in a target computer at t0, but the computer was patched at

t1, and Alice’s data is accessed at t2), should trust in Alice decrease?

3.1.2.2 Hysterisis. One method of addressing the challenges above

is to integrate a Hysterisis mechanism. Hysterisis operates like a float in a toilet’s

tank, it adds water to the tank when the water is low and shuts off the water when

the tank is close to full. A Hysterisis mechanism searchs the Information Store for

data that does not have enough feedback. If the mechanism finds a datum without

enough feedback, the mechanism directs other agents to access the data and evaluate

the datum to see if the datum is accurate.

The Hysterisis mechanism could also search the information data base for data

that is too old and data who’se trust is too low and direct agents to sample the

environment to corroborate the data in the Store.

3.1.2.3 Dynamic Trust Policy. The scenario in Section 3.1.2 mentions

using different Trust Policy Vectors given different circumstances. A Dynamic Trust

Policy is one that assigns different weights to the Trust Policy Vector under different

circumstances. If a piece of data comes from an agent without many recommenda-
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tions, then the Trust Policy Vector for evaluating trust in that agent shifts to put

more emphasis on experience and knowledge.

3.1.3 Transitivity of Trust. Yahalom, Klein, and Beth’s paper [24] discussed

the transitivity of trust, as Alice trusts Bob, Bob trusts Cathy, therefore Alice trusts

Cathy. The Trust Vector system can be used to transfer or chain trust as well,

but there is a low watermarking type issue with it. Using Alice, Bob, and Cathy

again, if Alice trusts Bob at 0.8 for recommendations, and Bob recommends Cathy

to Alice, then the most Alice trusts Cathy initially is 0.8, as that is her trust to Bob

for recommendations, and that is only if Alice’s new trust to Cathy is based solely

on recommendations and if Bob trusts Cathy completely. If trust passed through a

recommendation chain of 5 people who all trust the other links at 0.9, the final trust

is 0.59049, again if new trust were solely based on recommendations.

Still, it is possible to use the Trust Vector model to create a new trust re-

lationship by passing recommendations from one agent to another, and that new

relationship increases as trust-positive events occur.

3.2 Recommended Settings and Modifications

Here is a list of recommended settings and modifications to the Trust Vector

model for integration into the CyberCraft Initiative.

3.2.1 Experience Component: Event Values. A modification to Ray and

Chakraborty’s model that this research explores is using a range of values from
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−1 to +1 to describe a trust event, rather than defining all events as either trust-

negative(−1) or trust-positive (+1). This modification allows greater granularity to

describe an event. If the babysitter in the previous chapter didn’t change the baby’s

dirty diaper and allowed the baby to scream, this experience is rated lower than an

experience where the baby’s diaper is dirty but the baby is happy. Both experiences

are trust-negative events, but a dirty diaper and unhappy baby may be recorded as

−0.8, while a dirty diaper but happy baby may be recorded as −0.3. This is useful

for calculating the experience component for the Trust Vector for Recommendations,

as it is difficult to discretely determine if a recommendation is Trust Positive or Trust

Negative. Instead, this research took the absolute difference between the recommen-

dation from the remote agent and the current trust from the local agent and used that

as a measurement as to how trust positive a recommendation was (lower differences

were more Trust Positive). This is shown in Figure 3.6.

Figure 3.6: Modification of the experience component: Event values.

3.2.2 Experience Component: Intervals. This proposed modification ex-

tends the modification to the event values discussed in Section 3.2.1.
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My experiments focused on Intervals with fixed widths. As an agent received

events from another agent, these intervals were populated without regard to how

quickly the events occured. A more realistic use of these Intervals is to set the intervals

to a fixed time, and have a variable number of events per interval. To determine the

weighted value of each interval, sum up the events per interval, divide the sum by

the number of events (to normalize the value), multiply the quotient by the weight

of the interval, and sum the weighted values of the intervals. Figure 3.7 is a visual

representation of the proposed modification.

Figure 3.7: Modification of the experience component: Fixed time intervals.

In Figure 3.7, Interval 1 has 5 events occur during that time period, Interval

2 has no events, and Interval 6 has 2 events, but each the value of each interval is

normalized between [−1, 1] before being weighted. One potential problem with this

approach is that intervals without events are assumed to be trust neutral, and skews

the experience component towards trust neutral. A better approach is to ignore the
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intervals without events and normalize the weights of the intervals with events. This

is a good candidate for a future experiment (Section 6.2.4).

Finally, from testing results, it is recommended that no more than 10 intervals

are kept for the experience component (Section 6.1.1) When 10 intervals are kept, the

10th interval provides 1.5% of the value of the experience component.

3.2.3 Integration of Entities. I propose that entities be introduced into

the Trust Vector model as any service or object that can be the target of a trust

relationship. Abdul-Rahman and Hailes’ paper [3] described static entities as those

entities that cannot execute the Recommendation Protocol, such as printers or disk

volumes. An agent is defined as an entity that can engage in the Recommendation

Protocol, so in terms of the Trust Vector system, an agent is an entity that holds a

trust relationship with other entities, and can therefore pass the value of the trust

relationship to another agent in a recommendation (the truster in a relationship must

be an agent, but the trustee need not be).

Ray and Chakraborty do not elaborate on the existence of non-agent entities,

so this proposal is not as much a modification to their work, but rather an expansion.

3.2.4 Associated Risk of a Trust Relationship. An idea from Purser’s Graph-

ical model was to include the associated risk (severity of consequences) if trust was

breached [15]. The CyberCraft Initiative may benefit from the inclusion of a risk field

to trust relationships, and require a higher trust threshold for relationships that have
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a higher associated risk. Patching systems against a worm has a higher risk than

installing Windows Media Player 10.

3.2.5 Degradation Function. Experiment II explores the degradation func-

tion, and modifications to the degradation function are listed in Section 5.2.1. Ex-

perimental results conclude that the period of decay is best set no less than 1.5 times

the expected time between trust calculations (Section 6.1.2).
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IV. Experimental Methodology

The goal of the two experiments is to identify the limits of the utility of historical

data in calculating the value of a trust relationship. This supports the overall goal of

the research by determining how much data must be kept, which then supports the

scalability of the model.

This chapter outlines the two experiments, then describes a scenario to give the

experiments a real world context, and concludes with the broad methodology used

to build the experiments. Specific implementation details for each experiment are

covered in subsections of the methodology. This methodology is based on the NIST

handbook [13].

4.1 Experiment I: Limits of Historical Data for Calculating the Expe-

rience Component

As described in Section 2.2.2.1, the experience component is composed of inter-

vals which contain a number of events. When calculating the value of the experience

component, the values of the events in each interval are summed to produce a value for

the interval. The values of the intervals are then normalized between [−1, 1], weighted

to put more emphasis on recent performance (the new intervals are weighted heavier

than the older intervals), and the weighted interval values are summed to produce

the value of the experience component. As the older intervals are weighted less than

newer intervals, at what point do the older intervals become insignificant?
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4.1.1 Problem Statement. As storage is a factor with multiple trust vectors

across a large number of agents, how much history must be stored? At what point

does the weight of the interval diminish the value of the interval to the point that it

is not worth storing the data?

4.1.2 Hypothesis. There is a threshold for the utility of historical data for

the experience component of the Trust Vector model, after which the cost of storing

the data far outweighs the benefit provided by the data.

4.1.3 Motivation. As the CyberCraft fleet is expected to encompass 1, 000, 000+

agents, the scalability of data storage becomes critical.

4.2 Experiment II: Utility of Degradation Function

Previous trust values are used in conjunction with current trust values to pro-

duce a composite trust score. If an agent had produced poor data in the past but is

now producing what appears to be good data, the current trust level is moderated

with historical knowledge of the previous performance. Another scenario has an agent

that has not been heard from for a while, but is now providing data again (e.g., the

reporting machine was turned off and has since been rebooted). The degraded trust

value is used to estimate the value of the new data, as it is imprudent to accept the

data at the previous trust level as it is unknown what has happened to that agent in

the interim.
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4.2.1 Problem Statement. In Section 2.2.4, the degradation function is

described. How fast should trust degrade? Two factors of the degradation function

control how fast trust degrades (the period of decay (τ) and rate of decay (k)), so

where should these factors be set? This experiment only tests the settings of the

period of decay (τ) in relation to the exchange rate, as the effects of the rate of decay

(k) can be seen in Figure 5.5.

4.2.2 Hypothesis. The period of decay must be set to at least twice the

expected time between trust calculations. If the period of decay is shorter than that,

the degradation function decays the previously calculated trust value too rapidly to

be useful.

4.2.3 Motivation. For the CyberCraft to integrate a degradation of trust,

the degradation function must be understood. If the degradation function decays

previous trust values too rapidly, the previous trust values approach trust neutrality

when combined with the current trust value. If the previous trust value has decayed

to trust neutrality, then the cost of storing the trust data, calculating the decayed

value of the trust relationship, and calculating the combined trust value exceeds the

benefit of knowing the previous trust value.

4.3 OS Fingerprinting Scenario

To illustrate the effect of keeping different amounts of historical experience data

on the trust value, the following deterministic scenario was developed. A group of
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five agents are fingerprinting a single target machine that runs Windows and can

run Linux as a virtual machine. When the target machine switches to the virtual

machine, one agent detects the Linux OS and reports the target machine as running

Linux, while the other agents continue to identify the target machine as running Win

XP. This leads to discrepancies between the data of the agents, and the trust between

the agent that detected Linux and the other agents that detect Win XP decreases,

until all agents report the same OS again (when the target machine closes the virtual

machine running Linux).

4.3.1 Experiment I: Scenario. In Experiment I, the five agents scan the

target machine every minute and exchange new recommendations every five minutes.

Four of the agents do not detect the virtual machine and continue to report the OS

as being Windows XP while the fifth agent detects the virtual machine and reports

that the OS is Linux (while Linux is running). This could be due to a different

scanning package that the fifth machine is using that is able to detect the virtual

machine, or the other agents are able to see past the virtual machine to the host

OS. The difference in the reports from the fifth machine and the other four machines

leads to the trust between the four machines that detect Windows XP and the fifth

machine to diminish, while the trust between the four machines that detect Windows

XP increases. This scenario shows the difference in trust when the target machine

switches from Windows to the Linux virtual machine at 9:00 AM and switches back
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to Windows at 9:30 AM (when all five machines again agree upon the detected OS,

leading to increase in trust amongst the agents).

4.3.2 Experiment II: Scenario. In Experiment II, the degradation function

is included in calculating the value of the trust relationships. The five agents scan

the target machine every minute, but in this experiment, the agents exchange new

recommendations every four minutes. Unlike the scenario for Experiment I, all agents

agree on the data, so the difference in results stem from only the level of the period

of decay.

Every time recommendations are exchanged, an agent evaluates the new rec-

ommendations, calculate current trust, and combine the current trust with the time-

dependant trust (degraded value of the last recorded trust) to determine the value

of the trust relationship at the current time. The current value of the trust relation-

ship is then recorded as the time-dependant trust. During minutes when data is not

exchanged, the value of the trust relationship is calculated using the time-dependant

trust, degraded appropriately.

4.4 System Boundaries

The system under test is a CyberCraft agent implementing the Trust Vector

model, as shown in Figure 4.1. The experiments measure the behavior of the Trust

Vector model in the synchronous paradigm, so multiple agents read data from the

same target or set of targets, exchange data about the target, evaluate data received
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from remote agents immediately upon receipt, and produce a set of trust values for

each agent (including a set of trust vectors for oneself). Further testing may be needed

of the behavior of the Trust Vector model in the transactional paradigm.

Each agent contains a Data Reading component, a set of Trust Vectors, a Trust

Evaluation Algorithm, and communication between the agents to exchange data and

trust values.

Figure 4.1: System Under Test: Implementation of the Trust Vector model.

4.4.1 Communications component. The current implementation of Cyber-

Craft agents use a distributed file system (Pastry) to communicate. All communica-

tion between the agents is through posting files to the distributed file system. Future

iterations of the CyberCraft may discard the Pastry framework and agents may com-
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municate through message passing instead, but these experiments are testing the

Trust Vector model under the implementation of CyberCraft. These experiments

assume that the communication channel between all agents is robust; therefore the

failure of communication between agents is not tested in this experiment.

4.4.2 Data Input component. The Data Reading component simulates a

sensor payload for the CyberCraft agent, gathering data about the environment and

outputting a value for the state of the environment. In the Operating System (OS)

fingerprinting scenario, the payload is a network scanner, reporting on the OS of the

target machine. To simulate a real network scanner, the Data Reading component

may misinterpret data gathered from the environment (e.g., a target machine is run-

ning WinXP on the hardware, but is also running Linux in a virtual machine. One

network scanner identifies the target machine as running WinXP, while another scan-

ner identifies the target machine as running Linux). This misinterpretation is not

necessarily wrong, but causes conflict between reporting agents.

For this research, the misinterpretation of data is deterministically controlled

by the system parameter Misinterpretation of Data, and could be different for each

agent.

4.4.3 Decision component. Future experiments should focus on the ability

of a CyberCraft agent to make a correct decision given ambiguous information. The

Decision component gathers various inputs and the associated trust, and makes a
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decision with an associated confidence as to the true state of the environment. This

future research is covered in Section 6.2.9.

4.4.4 Trust Vectors. The set of Trust Vectors contain values for the three

components of the trust vectors between agents for the two contexts, reading data

and recommendations.

The experience component has two variables: the number of intervals kept,

and the number of events per interval. These variables are controlled by the system

parameters: Intervals and Interval Width.

The recommendation component is influenced by the number of agents in the

recommendation pool.

The degradation function has four variables: Period of decay, degradation rate,

α and β. The first two are controlled by the system parameters of the same name,

β is controlled by the parameter Time-dependant Weight, and α is calculated from

beta (α = 1 − β). The period of decay (τ) is the amount of time used to calculate

the difference in time (∆t) between timestamps. If the period of decay is 5 minutes,

then the ∆t between ti = 6 and tn = 10 is 0.8 ( tn−ti
T

), but if the period of decay was

increased to 10 minutes, the ∆t between 6 and 10 becomes 0.4.

The degradation rate is represented as k in the degradation function, which

controls how fast a vector’s value degrades with the passage of time. Higher values

of k initially degrade the value slower, and then have a more rapid decay (at about

∆t = 0.4· | vTti | ).
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The variables α and β control how much weight is assigned to the decayed value

of a previous vector when combining the value of the previous vector and the value

of the present vector.

4.4.5 Experiment I: System Boundaries. Figure 4.2 shows the system

boundaries of Experiment I, with the parameters held constant on the top of the

system diagram, the factor that is changed in the experiment on the left of the sys-

tem, and the metric of the experiment displayed on the right. The system boundaries

for Experiment I remain the same as detailed in Section 4.4, with the exception of

the lack of the degradation function.

Figure 4.2: Experiment I Design.
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4.4.6 Experiment II: System Boundaries. Figure 4.3 shows the system

boundaries of Experiment II, again with the parameters held constant on the top of

the system diagram, and the factor that is changed in the experiment on the left of

the system.

Figure 4.3: Experiment II Design.

4.5 System Services

The CyberCraft agent provides two services, the state of the environment as

it sees it (data output) and recommendations for the abilities of other agents (Trust

Recommendations). The Trust Recommendations are equal to the value of the nor-

malized trust vector after modification by the Trust Policy Vector and the degradation

function. In both experiments, the data output is the OS Fingerprinting.
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4.6 Workload

The workload for the system is the number of events observed. For both exper-

iments, an event is the simulation of a fingerprinting of a target machine’s operating

system.

Depending on such parameters as the number of agents in the system, the

exchange rate, and the scan rate (rate at which events occur), an event can trigger

multiple messages exchanging data reports and recommendations between the agents,

which could pose a challenge to the operation of the system. It is hypothesized that

the experiments do not create enough message traffic to slow the system from normal

operations.

4.6.1 Experiment I: Workload. This experiment contained 180 events. The

events from event #60 and event #120 were interpreted differently by the agents (one

agent fingerprints the OS as Linux while the other machines fingerprint the OS as

WinXP).

4.6.2 Experiment II: Workload. This experiment contained 180 events. All

agents fingerprint the OS as Linux when the virtual machine is running Linux.

4.7 Metrics

Both experiments use one of the values of a Trust Relationship as the metric

to determine the magnitude of difference the factors for the experiment cause in the

trust value. Specifically, the value of the Trust Relationship from Agent 0 to Agent
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4 for OS Fingerprinting (as opposed to Recommendations) is used as the metric for

both experiments.

4.8 Parameters

The parameters for the experiments are the attributes of the environment or

the implementation of the Trust Vector model that affect the output. All parameters

for the system are shown in Table 4.1.

Both experiments used the following parameter settings:

• Trust Policy Vector: {We = 0.4,Wk = 0.25,Wr = 0.35}

• Number of agents = 5

• Interval Width = 4 events

• Knowledge Component = 1

• Scan Rate = Once per event (Once a minute)

Experiment I used the following settings for the other parameters:

• Data =

– 60 events (representing 1 hour from 0800 to 0859) where the data is Win

XP.

– 60 events where the data is is Linux.

– 60 events where the data where the data is Win XP. again
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Table 4.1: Parameters of the Trust Vector Model.

Symbol Meaning
Trust Policy Weights assigned to each component when calculating the
Vector Trust Value. Covered in Section 2.2.3.
Number of Agents The number of agents exchanging data about the same

environment. Also the number of agents in the recommendation
pools.

Data Information about the environment each agent is scanning.
In these experiments, the OS of the target system.

Intervals Kept Number of Intervals kept to calculate Experience Component.
Section 2.2.2.1

Interval width Number of events per interval for Experience Component
Period of decay The time period between t0 and t1 in the degradation function.

Section 2.2.4
Degradation Rate Integer value of k in the degradation function

The effect of k on the function is shown in Figure 5.5
Time-dependant β in combining function
weight
Knowledge The value for the Knowledge Component
component This value is kept constant for all the experiments in this research.

Future research will concentrate on dynamically modifying
this value in as result of performance

Scan rate How often does an agent acquire data about the environment.
In these experiments, how often does the agent scan the target
machine’s OS.

Exchange rate How frequently does an agent send its recommendations to the
other agents. This implementation of the model uses a “push”
method for exchange of recommendations, rather than a “pull”
method, where recommendations are exchanges when polled for.

Misinterpretation This parameter represents the tenancy of an agent to misinterpret
of data the results of a scan as a different OS, leading to discrepancies

of data between agents.

• Intervals Kept is the factor for this experiment. The levels for this factor are

specified in Section 4.10.

• Exchange Rate = Every 5 minutes
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• Misinterpretation of data: One agent detects the Linux OS from the virtual

machine, The other agents do not detect the virtual machine and only detect

Win XP.

• Degradation rate: Not tested

• Period of decay: Not tested

• Time-dependant Weight: Not tested

Experiment II used the following settings for the other parameters:

• Data = 180 events (representing 3 hours from 0800 to 1100) where the data is

Linux

• Intervals Kept = 10 intervals

• Exchange Rate = Every 4 minutes

• Misinterpretation of data: Not tested (All agents detect the Linux OS)

• Degradation Rate: k = 2

• The period of decay is the factor for this experiment. The levels for this factor

are specified in Section 4.11.

• Time-dependant Weight: 0.3̄

4.9 Factors

The factors of the experiments are the parameters that are varied between runs.

The factors for each experiment are detailed below.
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4.10 Experiment I: Factors

Experiment I varied the number of intervals kept by the experience component.

The levels were 7, 8, 9, 10, and 11 intervals kept.

4.11 Experiment II: Factors

Experiment II varied the period of decay. The levels for the experiment were:

• 4 minutes (τ = 1 times the exchange rate)

• 6 minutes (τ = 1.5 times the exchange rate)

• 8 minutes (τ = 2 times the exchange rate)

• 12 minutes (τ = 3 times the exchange rate)

4.12 Evaluation Technique

Both experiments evaluate the effects of the factor on the metric, the value of

the trust relationship from Agent 0 to Agent 4 in the context of OS Fingerprinting

is plotted for every event (Figures 5.2 & 5.6). The plots for each run are compared

against each other to determine the effect that the change of the factor level had on

the trust value from Agent 0 to Agent 4 in the context of data reporting.

4.13 Experimental Design

Both experiments test four levels of one factor in a deterministic system. As

the test is deterministic, only one run per factor level is needed. Thus, four runs, one

at each factor level, are performed.

74



V. Analysis and Results

This chapter covers the analysis of each tested component and the results of each

experiment. Experiment I examined the utility of older intervals when calculating

the experience component. Experiment II focused on exploration of the degradation

function, to include defining the period of decay and determining the effect of the

degradation rate. The analysis and results for each experiment are listed in the

respective sections for the experiments.

5.1 Experiment I: Limits of Historical Data for Calculating the Expe-

rience Component

5.1.1 Analysis. To determine how much historical data must be stored, we

first analyzed how much the historical data contributes to the current trust value.

Historical data is used to calculate the value of the experience component (which in

turn is used to calculate the trust value of the trust vector), and in the current value

of a previous trust vector.

As stated in Section 2.2.2.1, the experience component is calculated by weighting

the values of the intervals of the event history and summing the products of the weights

and the values of the intervals. Table 5.1 shows the weight associated with the oldest

interval kept for a given number of intervals.

As shown in Table 5.1, if 10 intervals of data are stored for the calculation of the

experience component, the oldest interval counts for less than 2% of the total value

of the experience component.

75



Table 5.1: Decreasing value of Oldest Interval.

Number of S = n(n+1)
2

Weight of
Intervals Oldest Interval

1 1 100%
2 3 33.3%
3 6 16.7%
4 10 10.0%
5 15 6.7%
6 21 4.8%
7 28 3.6%
8 26 2.8%
9 45 2.2%
10 55 1.8%
11 66 1.5%
12 78 1.3%

The following scenario illustrates the difference between keeping 11 intervals of

historical data vs. only keeping 10 intervals (Figure 5.1). If the events in the 11th in-

terval are all trust-negative, and all events since the oldest interval were trust-positive,

the normalized value of interval 1 (the oldest interval) is −1 and the normalized val-

ues of the rest of the intervals are +1. The difference between summing the weighted

values for the 11 intervals versus the ten most recent intervals is 0.03 (twice the weight

of the oldest interval). An alternative scenario is that the oldest interval’s value is

still −1 and the rest of the intervals’ values are 0. The difference in this case is 0.015,

equivalent to the weight of the oldest interval. The maximum difference between the

keeping 11 intervals and keeping 10 intervals occurs when the eleventh interval’s value

was one extreme and the rest of the intervals were the other extreme.

From this, the maximum difference between keeping x intervals and keeping x−1

intervals is twice the weight of the oldest interval when x intervals are kept. From
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Figure 5.1: Calculation of experience component.

Table 5.1, the weight at 8 intervals is 2.8%, so to keep 7 intervals versus 8 intervals

could lead to a 5.6% difference in the value of the experience component. Each

application that uses the trust vector system have different needs for the granularity

of trust, and Table 5.1 contains the information to determine the number of intervals

needed to meet the level of granularity. The experience component is only one part

of the trust vector system, and the impact it has on determining trust is governed

by the trust policy. If the trust policy is set where the experience component if 50%

of the trust value, then the 5.6% difference in the value of the experience component

leads to a 2.8% difference in the trust value.

5.1.2 Experiment I: Results. Figure 5.2 shows the differences in the Trust

Value of the agents reporting Windows OS with regard to the agent reporting the

Linux virtual machine 1 2. The graph shows that as the number of intervals kept

decreases, the Trust Value changes faster and drops farther when discrepancies occur,

as there is less historical data to counterbalance current data. The difference between

8 intervals kept and 9 intervals kept is greater than the difference between 10 intervals

1This scenario was based on only the current calculated Trust Values, and not previously calcu-
lated Trust Values with the degradation function.

2This scenario also only concentrates on the discrepancy between reports between agents. A
real world application of OS fingerprinting must incorporate some method to account for Virtual
Machines or dual boot machines. This is covered in the Future Work section.
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Figure 5.2: Trust Value for different experience intervals kept.

kept and 11 intervals kept (shown in Table 5.2). The maximum difference of the

Trust Values between runs with different number of intervals kept is consistent with

the mathematical analysis in Table 1. The maximum difference between keeping 9

and 10 intervals of data in the scenario was 0.0321, which is slightly more than 1.6%

of the range of Trust Values (-1 to 1). The 1.6% difference in trust values is less

than the 1.8% of the experience component listed as the value of the oldest interval

when 10 intervals are kept (which is to be expected, as the experience component

only accounted for 35% of the Trust Value).
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In the application of the Trust Vector Model, the decision of how many intervals

are to be kept depends on the trade-off between storage of each interval and the need

for granularity of the Trust Values. The storage cost of each interval can be calculated

by E ×B × C × A where

• E = Events per Interval

• B = Bytes per event

• C = Number of contexts

• A = Number of agents

This scenario uses four events per interval, but this is arbitrary. If the time

period of the interval is fixed but the occurrence of a trust event is stochastic, then

the number of events per interval could vary depending on the rate of events generated.

The Trust Vector Model proposed by Ray and Chakraborty uses boolean values

for each trust event, so every event is either trust-positive or trust-negative, but there

are many contexts where a range of values for the trust event is more applicable. One

example of this is the recommendations. The modified Trust Vector Model that is

used in this research uses floating point values between -1 and 1 to represent each

event for recommendations, as it makes more sense to represent an agent’s trust in

a recommendation as the absolute difference between that recommendation and the

agent’s trust value for the same context rather than a boolean value of agreeing with

the recommendation and not agreeing with the recommendation. This scenario used

one byte for every event.
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This scenario only used two contexts, OS Fingerprinting and Recommendations,

but it is conceivable that scanning a network for vulnerabilities could have a different

context for every vulnerability scanned (or the ability of a network scanner could be

abstracted into a single context).

This scenario used five agents, so each agent keeps one Trust Vector per context

for all other agents plus a Trust Vector to itself for each context. Thus each interval

costs 40 bytes to store per agent (4× 1× 2× 5 = 40).

Table 5.2: Decreasing value of Oldest Interval.
Number of Maximum difference
Intervals of Trust Values
8 to 9 0.0357
9 to 10 0.0321
10 to 11 0.0287

5.1.3 Results. Our results support our hypothesis in that as data ages, the

benefit provided by the older data is diminished to the point where the contribution

to the current trust level is so small that keeping the data is not worth the storage

cost. We do not attempt to identify a specific point to discard data, but provide a

model which can provide recommendations based on the implementation of the Trust

Vector model

5.2 Experiment II: Utility of Degradation Function

5.2.1 Analysis. In analyzing Ray and Chakraborty’s equation, we saw that

higher initial values of trust degrade faster than lower initial values, which is counter

intuitive (Figure 5.3). Inverting the v(Tti) term (trust value at time ti) from the
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Figure 5.3: Higher values degrade faster using v(Ttn) = v(Tti)e
−(v(Tti )∆t)2k

.

exponent of e changes the equation to v(Ttn) = v(Tti)e
−(v(Tti )

−1∆t)2k
, which degrades

all trust values at an equal rate as shown in Figure 5.4 (k is arbitrarily set to 2 to

match figure 2).

Figure 5.4: All values degrade at an equal rate using v(Ttn) = v(Tti)e
−(v(Tti )

−1∆t)2k
.

Figure 5.5 shows the degradation of the trust values based on different decay

rates. In the equation v(Ttn) = v(Tti)e
−(v(Tti )

−1∆t)2k
, k is an arbitrary value for the
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Figure 5.5: Degradation of Trust Value of 1 at different rates.

decay rate of the trust value. As k increases, the trust value decays slowly at first and

then rapidly decays, but we see that for k > 1 the value approaches 0 between about

t1.25 and t1.5 . Even with k = 1 we see that by t2 the decayed value is approaching 0.

With higher values of k the decay approaches zero between t1 and t1.25.

Time periods are arbitrary, as the time difference between t0 and t1 could be

10 seconds or 2 months. The period of decay (the time from t0 and t1) should be set

based on how often trust values are calculated, so that most calculations of the value

of a trust relationship happen before the value of a previous trust vector has decayed

to nearly zero. This is not to say that trust should not be calculated using a previous
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trust vector that has decayed to nearly zero. An example is an agent that had not

reported data for a long period of time (“long period of time” being subjective to the

system), and the agent is now sending data again. If the agent was highly trusted

before going silent for the long period, the new data should not be trusted at the same

level as the agent may have been compromised (and fed misleading data) or may not

have the same capability as it once had (e.g., the agent was reporting from inside a

firewall, but the host computer was moved outside the firewall, and the agent does

not have the same access to information that it once had). Thus the new data should

be treated as it came from an agent that is untrusted (trust value of 0).

Figure 5.6: Degradation of trust at different levels of the period of decay (τ).

5.2.2 Results. Figure 5.6 shows the effect of the different levels of the

period of decay (τ) at steady state. All the agents interpret the data the same, so
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all agents are generating current trust levels of 1, representing complete trust with

each other. Because the Time-dependant weight was 0.3̄, one third of the value of the

trust relationship is based on the degraded time-dependant trust. Figure 5.6 shows

that when the period of decay is too close to the exchange rate, the trust degrades

too fast to be used effectively. Using Figure 5.4 as a reference, when τ = 1 times the

exchange rate, the time dependant value has degraded to the value at t1.
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VI. Conclusions and Future Work

This thesis presented the hypothesis that the Trust Vector model is an acceptable

model for the distributed environment of the CyberCraft fleet. This research supports

the hypothesis that the Trust Vector model can be modified to fit the CyberCraft

Initiative. This research proposed some modifications and expansions to the Trust

Model Vector (listed in Chapter III), and identified areas for future research (Section

6.2)

Contributions: This research identifies that the transactional paradigm mod-

els the environment of the CyberCraft fleet better than a synchronous paradigm. A

modification to the degradation function is proposed (Section 5.2.1), as well as a mod-

ification to the evaluation of the events (defining the benefit of each event as a value

between [−1, 1], rather than just as a trust-negative or trust-positive event (Figure

3.6)). Experiment I (Section 6.1.1) identifies the degrading value of older intervals

in the experience component. Experiment II (Section 6.1.2) identifies problems with

the degradation function, both with the function itself and the need for defining a

reasonable period of decay.

Shortcomings: There are a few remaining shortcomings of the Trust Vector

model that still need to be addressed. The largest of these shortcomings is the amount

of data needed to populate a trust vector. In the transactional paradigm, an agent

needs several transactions to build enough history to make accurate evaluations about

the trustworthiness of a remote agent. Because the Trust Vector model does not rely
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on experience alone, the model is able to rely on the other two components to build

a more robust picture of trust than by relying on experience alone.

Another area of research for the implementation of the Trust Vector model is

how to evaluate an event if no corroborating data is present. The use of Hysterisis

(Section 3.1.2.2) to force other agents to corroborate is useful only if other agents

have the same access to the environment that the reporting agent had. In some

situations, only one agent has access to the segment of the environment it is reporting

on. Markov Decision Processes (see Section 6.2.11) and other prediction mechanisms

may be a way to combat this.

The Trust Vector model did not address how the knowledge component should

be set, which may be a strength in allowing the implementor to determine how best

to use the knowledge component. Future work on how best to utilize the knowledge

component is beneficial to the CyberCraft Initiative and other implementors of the

Trust Vector model.

6.1 Experiments

The conclusions drawn from the results of the Experiments are as follows:

6.1.1 Experiment I: Limits of Historical Data for Calculating the Experience

Component. Conclusion: As the impact of the oldest interval decreases, even

with a 50% weight of the experience component on the trust value, keeping 9 intervals

instead of 10 intervals leads to less than a 2% maximum difference, which is below
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the level of granularity needed for most applications. When CyberCraft is deployed

across thousands of computers and each agent holds multiple trust vectors per remote

agent, keeping one less byte of data per trust vector may be significant.

6.1.2 Experiment II: Utility of Degradation Function. Conclusion: The

utility of previous Trust Values decreases as time increases, and Section 5.2.1 shows

that by t2 (two time periods since the trust value was last calculated) previous

trust values have decayed to the point that they are too small to impact the cur-

rent value of trust. This conclusion is valid using the modified equation v(Ttn) =

v(Tti)e
−(v(Tti )

−1∆t)2k
, as the original equation keeps the value of smaller initial trust

longer (an initial trust value of 0.25 decays to 0.05 at approximately t4.5 at k = 2).

The period of decay must be no less than 1.5 times as long as the expected time

between trust calculations. In the transactional paradigm, if data posted by an agent

is expected to be read every 8 minutes, then the period of decay must be no less than

12 minutes.

6.2 Future Work

This section proposes areas for future research in fitting the Trust Vector model

to the CyberCraft Initiative, as well as other areas that the Trust Vector model may

be applicable to.

6.2.1 Transactional Paradigm. This research uses the synchronous paradigm

for both experiments, and is not able to explore the transactional paradigm outlined
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in Section 3.1.2. Future research must explore the use of the Trust Vector model in

the transactional paradigm to identify other challenges with the use of the modified

Trust Vector model.

6.2.2 Number of Agents in a Recommendation Pool. This research is fo-

cusing on the application of the Trust Vector model to the CyberCraft Initiative, to

include the balancing the number of agents that check each other with the overhead

of storage and network traffic that larger trust groups cause. As the CyberCraft

Initiative will eventually span hundreds of thousands of computers, scalability of the

Trust Vector model becomes an issue.

6.2.3 Abstraction of Trust Context. Another scalability issue that I was un-

able to address in this research is the abstraction of the context of trust relationships,

where the trade off between the granularity of multiple trust vectors for specific tasks

must be balanced with the storage and computational complexity requirements to

support several trust vectors.

An example of this is combining the trust relationships for several specific con-

texts into a generic context. It provides more granularity for a network scanner to

have different trust relationships for each vulnerability scanned, as some scanners

have better detection rates against some vulnerabilities than other vulnerabilities.

The downside of having a trust vector for each vulnerability is that with a large

number of vulnerabilities, the storage for each trust vector becomes significant. To

balance this, the system may abstract the vulnerabilities into types of vulnerabili-
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ties, such as grouping vulnerabilities by network layer or by year discovered. Thus

a network scanner may have one trust vector for each network layer rather than the

thousands of trust vectors for each vulnerability.

Future research must address the culminating point between the granularity

of trust contexts and the storage, computational power, and bandwidth needed to

support multiple trust vectors for different contexts between agents.

6.2.4 Experience Component. The effects and challenges of a modification

of the experience component’s intervals to be fixed time periods instead of fixed

width based on number of events is not addressed by this research. One challenge is

how to treat intervals without events. Should intervals without events be treated as

trust-neutral (0) for the calculation of the experience component, or should they not

be factored in, and the intervals with events are normalized in a similar fashion to

recommendations? This is an area for future work.

6.2.5 Knowledge Component. This research did not address the settings

of the knowledge component, and arbitrarily set the value at 1. Future research for

the knowledge component includes how to select an initial setting for the component

that is meaningful. One method for doing this was discussed in Section 3.1.1, using

a formal validation of a component to give it an initial value.

Future work may also include how to dynamically change the value of the knowl-

edge component. Chakraborty and Ray’s work on privacy [7], where they split the

knowledge subcomponents apart may be a good starting point.
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6.2.6 Normalization of Recommendations. It was identified in Section

2.2.2.3 that the equation:

ΨRc
Bob =

Σn
j=1|v(Alice

rec−→j)N
t |·Vj

Σn
j=1|v(Alice

rec−→j)N
t |

.

had problems in accomodating negative trust values for recommendations. If Alice

distrusts Bob’s recommendation, this equation calculates his recommendation as if

Alice trusted it.

Table 6.1 show modifications to the normalization equations, and Table 6.2

shows the effects of these modifications to the equation when normalizing recommen-

dations. ΨRc
Bob represents Alice’s recommendation component for Bob, where Alice

receives recommendations from Cathy and David. Alice trusts Cathy’s recommen-

dations at 0.5, and trusts David at -0.5 (indicating distrust).

Table 6.1: Modifications of the normalization equation.
Equation Equation
Number ΨRc

Bob =

Original
Σn

j=1|v(Alice
rec−→j)N

t |·Vj

Σn
j=1|v(Alice

rec−→j)N
t |

Modification 1
Σn

j=1v(Alice
rec−→j)N

t ·Vj

Σn
j=1|v(Alice

rec−→j)N
t |

Modification 2
|Σn

j=1v(Alice
rec−→j)N

t ·Vj |
Σn

j=1|v(Alice
rec−→j)N

t |

Modification from p-Trust [7]
Σn

j=1v(Alice
rec−→j)N

t ·Vj

Σn
j=1v(Alice

rec−→j)N
t

It appears that Modification 1 (
Σn

j=1v(Alice
rec−→j)N

t ·Vj

Σn
j=1|v(Alice

rec−→j)N
t |

) makes the most sense, as

receiving positive recommendations from a trusted agent and from a distrusted agent

cancel each other out, and receiving a negative recommendation from a distrusted

agent is interpreted as a positive recommendation from a trusted agent. Use of the
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Table 6.2: Effect of different normalization equations.

Equation Cathy’s David’s Results

ΨRc
Bob = Recommendation Recommendation

v(Alicerec−→Cathy)N
t = 0.5 v(Alicerec−→Cathy)N

t = −0.5
Original 0.75 0.75 0.75
Original -0.75 0.75 0.0

Modification 1 0.75 0.75 0.0
Modification 1 -0.75 0.75 0.75
Modification 2 0.75 0.75 0.75
Modification 2 -0.75 0.75 0.75

p-Trust Modification 0.75 0.75 Undefined
(Divide by 0)

p-Trust Modification -0.75 0.75 Undefined
(Divide by 0)

p-Trust equation with both positive and negative trust values can lead to an answer

that is greater than 1 or is undefined.

This research did not have time to explore the use of these modifications, but

exploring this area is useful as future research.

6.2.7 Additional Components. Ray and Chakraborty [17] state that the

three components of their Trust Vector model are not the only ones that may be

used, and this model can be expanded again to add a fourth or fifth component, or an

existing component can be replaced. Chakraborty and Ray’s expansion of the Trust

Vector model into the p-Trust model [7] uses the two subcomponents of the knowledge

component as components of the p-Trust vector. Future work in this area may prove

beneficial to the Trust Vector model as well as other trust models.
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6.2.8 Differing Views of Data. Another area of future research is the use

of Trust Vectors with differing views that do not necessarily conflict. An example of

this is in the OS Fingerprinting scenario in Section 4.3, if one agent reports a target

system as being a Mac OS, another agent reports the same system as a Windows

OS (but not specifically XP or 2000), and a third machine reports the machine as a

Windows XP SP2, how does the model combine these inputs to produce a best guess

at the target machine’s OS with an associated confidence. Further research entails

how to accommodate data that changes with time, such as a dual booting system or

virtual machines.

6.2.9 Ambiguity of Data. Ambiguity in the reported data is another area of

future research. An example of this is if an agent was fingerprinting a target system

and the data received from the scan was not conclusive, e.g., the target OS had some

Linux characteristics, but not enough to definitely label the target system as Linux.

Another example of the above is if the agent suspects that it is compromised, and is

being fed inaccurate data. Data sent from these agents to other agents must reflect

the ambiguity in the data held by the reporting agent. This ambiguity can be reflected

in a confidence tag included with the data.

6.2.10 Integration of VTrust into the CyberCraft Initiative. This research

did not address the user of the VTrust system as the Trust Management framework

for the CyberCraft Initiative. This research instead presumed that trust data is stored

at each agent, and that trust is shared by querying other agents.
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Future research must address the tradeoffs and vulnerabilities of storing all

trust data in a central database. Using VTrust, agents do not need to store trust

data locally, therefore the challenge of the scalability of data storage is transferred to

the database. The trade-off is that all agents need to query the database for trust

calculations.

Another area of research in central storage of trust data is the amalgamation

of trust data. In the distributed model for trust data, the experience component for

trust relationships was based on only the local agent’s experience with a remote agent.

By using a central repository for all trust data, the experience components could be

calculated by all agents’ recent experiences with the remote agent.

6.2.11 Lack of Corroborating Data and Markovian Decision Processes. An-

other area of research for the implementation of the Trust Vector model is how to

evaluate an event if no corroborating data is present. The use of Hysterisis (Section

3.1.2.2) to force other agents to corroborate is useful only if other agents have the

same access to the environment that the reporting agent had. In some situations,

only one agent has access to the segment of the environment it is reporting on.

One possibility of dealing with integrating Markovian Decision Processes [6] or

another predictive mechanism into the Trust Vector model to supplement building a

trust vector with little data.

6.2.12 Dynamic Routing and Topology Control. Another possible applica-

tion of Trust Vectors is the use of Trust Vectors with dynamic routing of network
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traffic. This may include using the rate of dropped packets for the experience compo-

nent, the available bandwidth of a link (as well as graph theory with network topology)

as the knowledge component, and abilities of neighboring routers to reach a distant

end for the recommendation component to determine the utility of a link to reach a

distant end. The Air Force Institute of Technology (AFIT) has been researching this

area in depth, and may benefit from collaborating with Colorado State University in

researching the applicability of the Trust Vector model to dynamic routing.

6.2.13 Evolutionary Algorithms and Artificial Immune Systems. Capt Charles

“Space” Haag’s thesis [9] explores the use of evolutionary algorithms to build better

artificial immune systems (AIS). The “anti-bodies” of the AIS are trained to recog-

nize the strings inherent in the normal state of the system, and then are introduced

to non-state strings, which may be malicious attacks that the AIS is trying to block.

The anti-bodies that perform well in determining state vs. non-state are heuristically

selected to survive and spawn more anti-bodies, while the anti-bodies that perform

poorly are removed. While not a distributed system, it is possible that the Trust

Vector model could be integrated into the anti-bodies to give the system a better

sense of which anti-bodies are performing well.

6.2.14 The “High Ground” of Cyberspace. While this area of research does

not directly relate to the CyberCraft Initiative or the use of Trust Vectors, identifying

the “high ground” of Cyberspace is pertinent to how the USAF and U.S. military

wages Cyber-warfare in the near future. Alvin and Heidi Toffler identified the concept
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of “high ground” in space as the lunar Lagrangian points L4 and L5 [20]. These

points are located where the gravity between the earth and the moon are equal, thus

a satellite or space station expends little energy to remain parked at one of these

points, while an opponent has to expend a great amount of energy to reach these

points to attack the satellite located there. This concept is analogous to the high

ground of a terrestrial battlefield, where a defensive position on top of a hill enables

the defender to rain arrows or bullets upon an opposing force assaulting the defender’s

position, while the opposing force is expending energy climbing the hill.

Identifying the “high ground” for the Cyber-battlefield now allows up to posture

our Cyber-forces on the “high ground” before we are engaged in battle. I hypothesize

that trust is a key component of the “high ground” of Cyberspace, as it forces the

opponent to expend energy to overcome trusted relationships to assault the defender.
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